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1.     Introduction 
 
During the last decades, the potential of analytics and data mining —methodologies that extract 
useful and actionable information from large datasets--has transformed one field of scientific 
inquiry after another (cf. Summers et al., 1992; Collins et al., 2004). Analytics has become a 
trend over the last several years, reflected in large numbers of graduate programs promising to 
make someone a master of analytics, proclamations that analytics skills offer lucrative 
employment opportunities (Manyika et al., 2011), and airport waiting lounges filled with 
advertisements from different consultancies promising to significantly increase profits through 
analytics. When applied to education, these methodologies are referred to as learning analytics 
(LA) and educational data mining (EDM). In this chapter, we will focus on the shared similarities 
as we review both parallel areas, while also noting some important differences. 
 
Using the methodologies we describe in this chapter, one can scan through large datasets to 
discover patterns that occur in only small numbers of students or only sporadically (cf. Baker et 
al., 2004; Sabourin et al., 2011); one can investigate how different students choose to use 
different learning resources and obtain different outcomes (cf. Beck et al., 2008); one can 
conduct fine-grained analysis of phenomena that occur over long periods of time (such as the 
move towards disengagement over the years of schooling -- cf. Bowers, 2010); and one can 
analyze how the design of learning environments may impact variables of interest through the 
study of large numbers of exemplars (cf. Baker et al., 2009). In the sections that follow, we 
argue that learning analytics has the potential to substantially increase the sophistication of how 
the field of learning sciences understands learning, contributing both to theory and practice. 
 
The emergence of analytics 
Compared to sciences such as physics, biology, and climate science, the learning sciences are 
relatively late in using analytics. For example, the first journal devoted primarily to analytics in 
the biological sciences, Computers in Biology and Medicine, began publication in 1970. By 
contrast, the first journal targeted towards analytics in the learning sciences, the Journal of 
Educational Data Mining, began publication in 2009, although it was preceded by a conference 
series (commencing in 2008), a workshop series (commencing in 2005), and earlier workshops 
in 2000 and 2004. There are now several venues that promote and publish research in this area 
-- currently including the Journal of Educational Data Mining, the Journal of Learning Analytics, 
the International Conference on Educational Data Mining, the Conference on Learning Analytics 
and Knowledge (referred to below as “LAK”), as well as a growing emphasis on research in this 
area at conferences such as the International Conference on Artificial Intelligence in Education, 
ACM Knowledge Discovery in Databases, the International Conference of the Learning 
Sciences, and the annual meeting of the American Educational Research Association.  
 



The use of analytics in education has grown in recent years for four primary reasons: a 
substantial increase in data quantity, improved data formats, advances in computing, and 
increased sophistication of tools available for analytics. 
 
Quantity of Data 
 
One of the factors leading to the recent emergence of learning analytics is the increasing 
quantity of analyzable educational data. Considerable quantities of data are now available to 
scientific researchers through public archives like the Pittsburgh Science of Learning Center 
DataShop (Koedinger et al., 2010). Mobile, digital, and online technologies are increasingly 
utilized in many educational contexts. When learners interact with a digital device, data about 
that interaction can be easily captured or “logged” and made available for subsequent analysis. 
Papers have recently been published with data from tens of thousands of students. With the 
continued growth of online learning (Allen and Seamen, 2013) and the use of new technologies 
for data capture (Choudhury and Pentland, 2003), even greater scope of data capture during 
learning activities can be expected in the future, particularly as large companies such as 
Pearson and McGraw-Hill become interested in EDMand  Massive Online Open Courses 
(MOOCs) and providers such as Coursera, edX, and Udacity generate additional data sets for 
research (Lin, 2012).  
 
Data formats 
Baker recalls his first analysis of educational log data; almost two months were needed to 
transform logged data into a usable form. Today, there are standardized formats for logging 
specific types of educational data (cf. Koedinger et al., 2010), as well as considerable 
knowledge about how to effectively log educational data, crystallized both in scientific 
publications and in more informal knowledge that is disseminated at conferences and in 
researcher training programs like the Pittsburgh Science of Learning Center Summer School 
and the Society for Learning Analytics Research open online courses1.  
 
Increased processing/computation power 
The increase in attention to analytics is also driven by advances in computation (Mayer, 2009). 
Smart phones today exceed the computational power of desktop computers from less than a 
decade ago, and powerful mainframe computers today can accomplish tasks that were 
impossible only a few years ago.  Increases in computational power support researchers in 
analyzing large quantities of data, and also help to produce that data, in fields such as 
healthcare, geology, environmental studies, and sociology.   
 
Development of Analytics Tools 
Some of the most significant advances have been in supporting the management of large data 
sets, making it possible to store, organize, and sift through data in ways that make it 
substantially easier to analyze. Google developed MapReduce to address the substantial 
challenges of managing data at the scale of the internet (Dean and Ghemawat, 2008), including 

																																																								
1	https://learn.canvas.net/courses/33	



distributing data and data-related applications across networks of computers; previous database 
models were not capable of managing web-scale data. MapReduce led to the development of 
Apache Hadoop, now commonly used for data management. 
 
In addition to tools for managing data, an increasing number of tools have emerged that support 
analyzing it. In recent years, the sophistication and ease of use of tools for analyzing data make 
it possible for an increasing range of researchers to apply data mining methodology without 
needing extensive experience in computer programming. Many of these tools are adapted from 
the business intelligence field, as reflected in the prominence of SAS and IBM tools in 
education, tools that were first used in the corporate sector for predictive analytics and 
improving organizational decision making by analyzing large quantities of data and presenting it 
in a visual or interactive format (particularly valuable for scenario evaluation). In the early 2000s, 
many analytics tools were technically complex and required users to have advanced 
programming and statistical knowledge. Now, even previously complex tools such as SAS, 
RapidMiner, and SPSS are easier to use and allow individuals to conduct analytics with 
relatively less technical knowledge. Common desktop software, such as Microsoft Excel, has 
also incorporated significantly improved visualization and analytics features in recent years. 
Other tools such as Tableau Software are designed to support the use of analytics tools without 
advanced technical knowledge. As easier-to-use tools emerge, it  will make EDM and LA 
accessible to a larger number of learning sciences researchers. 
 
Developing Research Communities 
The two research communities we review in this chapter, educational data mining and learning 
analytics, have adopted complementary different perspectives on the analysis of educational 
data. Siemens and Baker (2012) noted that the two communities have considerable overlap (in 
terms of both research and researchers), and that the two communities strongly believe in 
conducting research that has applications that benefit learners as well as informing and 
enhancing the learning sciences. They also described some of the differences: 
 
1 Researchers in EDM are more interested in automated methods for discovery within 
educational data; researchers in LA are more interested in human-led methods for exploring 
educational data. This difference approximately tracks the relationship between data mining and 
exploratory data analysis, in the wider scientific literature. Automated methods for discovery can 
help to achieve the best possible prediction; human-led methods of discovery can result in more 
interpretable and more understandable models of phenomena.  
2 Researchers in EDM emphasize modeling specific constructs and the relationships 
between them; researchers in LA emphasize a more holistic, systems understanding of 
constructs. This difference parallels long-standing differences in approaches among learning 
sciences researchers. EDM research in this fashion more closely ties to theoretical approaches 
such as Anderson’s ACT-R Theory (Anderson & Lebiere, 1998) or the PSLC Theoretical 
Framework (Koedinger, Corbett, & Perfetti, 2012); LA research more closely ties to theory that 
attempts to understand systems as wholes or that take a situationalist approach (Greeno, 1998; 
also see Nathan and Sawyer, this volume, on elemental and systemic approaches in learning 



sciences). That said, We believe that researchers from each of these traditions may find 
methods emerging from each community to be useful.  
3 Researchers in EDM look to applications in automated adaptation, such as supporting 
learners through having educational software identify a need and automatically change to 
personalize the learner’s experience (cf. Arroyo et al., 2007; Baker et al., 2006; Corbett & 
Anderson, 1995); researchers in LA look to ways to inform and empower instructors and 
learners, such as informing instructors about ways that specific students are struggling, so that 
the instructor can contact the learner (cf. Arnold, 2010) . In this case, EDM and LA methods are 
each suited to both types of use, and the differences in focus are primarily due to the 
applications that were historically of interest to researchers in each community. 
 
Both EDM and LA have a strong emphasis on connection to theory in the learning sciences and 
education philosophy. Most researchers that publish at the EDM and LA conferences use theory 
from the learning sciences and education to guide their choice of analyses, and aim to 
contribute back to theory with the results of their analyses. The theory-oriented perspective 
marks a departure of EDM and LA from technical approaches that use data as their sole guiding 
point (see, for example, Anderson’s argument in 2008 that big data will render the scientific 
method obsolete: “But faced with massive data, this approach to science — hypothesize, model, 
test — is becoming obsolete.”). 
 
2.     Key methods and tools  
 
The methodologies used in EDM and LA have come from a number of sources, but the largest 
two sources of inspiration for the area have been methods from data mining and analytics in 
general, and from psychometrics and educational measurement. In many cases, the specific 
characteristics of educational data have resulted in different methods playing a prominent role in 
EDM/LA than in data mining in general, or have resulted in adaptations to existing psychometric 
methods. In this section, we survey some of the key methodologies in the field, and discuss a 
few examples of how these methodologies have been applied. This review draws on past 
reviews (cf. Baker & Yacef, 2009; Romero & Ventura, 2010; Ferguson, 2012; Siemens & Baker, 
2012), but extends them to incorporate recent developments. 
 
 
 2a. Prediction methods 
 
 One of the most prominent categories of EDM methods in the review by Baker & Yacef 
(2009), and continuing to this day, is prediction. In prediction, the goal is to develop a model 
which can infer a single aspect of the data (the predicted variable, similar to dependent 
variables in traditional statistical analysis) from some combination of other aspects of the data 
(predictor variables, similar to independent variables in traditional statistical analysis). 
Developing a prediction model depends on knowing what the predicted variable is for a small 
set of data; a model is then created for this small set of data, and statistically validated so that it 
can be applied at greater scale. For instance, one may collect data on whether 1000 students 
dropped out of college, develop a prediction model to infer whether a student will drop out of 



college, validate it on sub-sets of the 1000 students that were not included when creating the 
prediction model, and then use the model to make predictions about new students. As such, 
prediction models are commonly used to either predict future events (cf. Dekker et al., 2009; 
Feng et al., 2009; Ming & Ming, 2012), or to predict variables that are not feasible to directly 
collect in real-time – for example, collecting data on affect or engagement in real-time often 
requires expensive observations or disruptive self-report measures, whereas a prediction model 
based on student log data can be completely non-intrusive (cf. Baker et al., 2004; D’Mello et al., 
2008; Sabourin et al., 2011).  
 
These methods have successfully supported interventions to improve student outcomes. For 
example, the Purdue Signals project used prediction models to identify students who were at 
risk for dropout in courses and university programs. The use of Purdue Signals resulted in more 
help-seeking, better course outcomes, and significantly improved retention rates (Arnold, 2010).  
 
Three types of prediction models are common in EDM/LA: classifiers, regressors, and latent 
knowledge estimation. In classifiers, the predicted variable can be either a binary (e.g. 0 or 1) 
or a categorical variable. Some popular classification methods in educational domains include 
decision trees, random forest, decision rules, step regression, and logistic regression. In 
regressors, the predicted variable is a continuous variable, e.g. a number. The most popular 
regressor in EDM is linear regression (note that linear regression is not used the same way in 
EDM/LA as in traditional statistics, despite the identical name).  
 
A third type of prediction model that is important in EDM/LA (which is actually just a special type 
of classifier) is latent knowledge estimation. In latent knowledge estimation, a student’s 
knowledge of specific skills and concepts is assessed by their patterns of correctness on those 
skills (and occasionally other information as well). The models used in online learning typically 
differ from the psychometric models used in paper tests or in computer-adaptive testing, 
because with an interactive learning application, the student’s knowledge is continually 
changing. A wide range of algorithms exist for latent knowledge estimation; the two most 
popular are currently Bayesian Knowledge Tracing (BKT -- Corbett & Anderson, 1995) and 
Performance Factors Analysis (PFA -- Pavlik, Cen, & Koedinger, 2009), which have been found 
to have comparable performance in a number of analyses (see review in Pardos et al., 2011). 
Knowledge estimation algorithms increasingly underpin intelligent tutoring systems, such as the 
Cognitive Tutors currently used for Algebra in 6% of U.S. high school classrooms (cf. Koedinger 
& Corbett, 2006). 
 
      2b. Structure Discovery 
 
      Structure discovery algorithms attempt to find structure in the data without an a priori idea 
of what should be found, a very different goal than in prediction. In prediction, there is a specific 
variable that the EDM/LA researcher attempts to model; by contrast, there is not a specific 
variable of interest in structure discovery. Instead, the researcher attempts to determine what 
structure emerges naturally from the data. Common approaches to structure discovery in 



EDM/LA include clustering, factor analysis, social network analysis, and domain structure 
discovery. 
  
      In clustering, the goal is to find data points that naturally group together, splitting the full 
data set into a set of clusters. Clustering is particularly useful in cases where the most common 
categories within the data set are not known in advance. If a set of clusters is well-selected, 
each data point in a cluster will generally be more similar to the other data points in that cluster 
than data points in other clusters.  Clusters have been used to group students (cf. Beal, Qu, & 
Lee, 2006) and student actions (cf. Amershi & Conati, 2009). For example, Amershi & Conati 
(2009) found characteristic patterns in how students use exploratory learning environments, and 
used this information to identify more and less effective student strategies. 
 
      In factor analysis, a closely related method, the goal is to find variables that naturally group 
together, splitting the set of variables (as opposed to the data points) into a set of latent (not 
directly observable) factors. Factor analysis is frequently used in psychometrics for validating or 
determining scales. In EDM/LA, factor analysis is used for dimensionality reduction (e.g., 
reducing the number of variables) for a wide variety of applications. For instance, Baker et al. 
(2009) used factor analysis to determine which design choices are made in common by the 
designers of intelligent tutoring systems (for instance, tutor designers tend to use principle-
based hints rather than concrete hints in tutor problems that have brief problem scenarios).    
 
 In social network analysis (SNA), models are developed of the relationships and 
interactions between individual actors, as well as the patterns that emerge from those 
relationships and interactions. A simple example of its use is in understanding the differences 
between effective and ineffective project groups, through visual analysis of the strength of group 
connections (cf. Kay et al., 2006). SNA is also used to study how students’ communication 
behaviors change over time (cf. Haythornthwaite, 2001), and to study how students’ positions in 
a social network relate to their perception of being part of a learning community (cf. Dawson, 
2008). This is valuable information because patterns of interaction and connectivity can indicate 
prospect of academic success as well as learner sense of engagement in a course (Macfadyen 
and Dawson, 2010; Suthers and Rosen, 2011).  
 
SNA reveals the structure of interactions, but does not detail the nature of exchanges or the 
impact of connectedness. Increasingly, network analysis is paired with additional analytics 
approaches to better understand the patterns observed through network analytics; for example, 
SNA might be coupled with discourse analysis (see Enyedy and Stevens, this volume; also 
Buckingham Shum and Ferguson, 2012). 
 
      Domain structure discovery consists of finding the structure of knowledge in an 
educational domain (e.g., how specific content maps to specific knowledge components or 
skills, across students). This could consist of mapping problems in educational software to 
specific knowledge components, in order to group the problems effectively for latent knowledge 
estimation and problem selection (cf. Cen, Koedinger, & Junker, 2006), or could consist of 
mapping test items to skills (cf. Tatsuoka, 1995). Considerable work has recently been applied 



to this problem in EDM, for both test data (cf. Barnes, Bitzer, & Vouk, 2005; Desmarais, 2011), 
and for tracking learning during use of an intelligent tutoring system (Cen, Koedinger, & Junker, 
2006).  
 
      2c. Relationship Mining 
 
      In relationship mining, the goal is to discover relationships between variables in a data set 
with a large number of variables. Relationship mining has historically been the most common 
category of EDM research (Baker & Yacef, 2009), and remains extremely prominent to this day. 
It may take the form of attempting to find out which variables are most strongly associated with 
a single variable of particular interest, or may take the form of attempting to discover which 
relationships between any two variables are strongest. Broadly, there are four types of 
relationship mining: association rule mining, correlation mining, sequential pattern mining, 
and causal data mining.  
  
      In association rule mining, the goal is to find if-then rules of the form that if some set of 
variable values is found, another variable will generally have a specific value. For instance, Ben-
Naim and colleagues (2009) used association rule mining to find patterns of successful student 
performance in an engineering simulation, to make better suggestions to students having 
difficulty about how they can improve their performance. In correlation mining, the goal is to 
find positive or negative linear correlations between variables (using post-hoc corrections or 
dimensionality reduction methods when appropriate to avoid finding spurious relationships). An 
example can be found in Baker et al. (2009), where correlations were computed between a 
range of features of the design of intelligent tutoring system lessons and students’ prevalence of 
gaming the system (intentionally misusing educational software to proceed without learning the 
material), for example finding that brief problem scenarios lead to a greater proportion of gaming 
behavior than either rich scenarios or having no scenario at all (just equations to manipulate). In 
sequential pattern mining, the goal is to find temporal associations between events. One 
successful use of this approach was work by Perera et al. (2009), to determine what path of 
student collaboration behaviors leads to a more successful eventual group project. In causal 
data mining, the goal is to find whether one event (or observed construct) was the cause of 
another event (or observed construct), for example to predict which factors will lead a student to 
do poorly in a class (Fancsali, 2012). What all of these methodologies share is the potential to 
find unexpected but meaningful relationships between variables; as such, they can be used for 
a wide range of applications, generating new hypotheses for further investigation, or identifying 
contexts for potential intervention by automated systems. 
 
2d. Distillation of data for human judgment 
 
For data to be useful to educators, it has to be timely. When educators have immediate access 
to visualizations of learner interactions or misconceptions that are reflected in students’ writing 
and interaction, they can incorporate those data quickly into pedagogical activity. For this 
reason, one methodology that is common in LA is the distillation of data for human 
judgment. There has been a rich history of data visualization methods, which can be leveraged 



to support both basic research and practitioners (teachers, school leaders, and others) in their 
decision-making. For example, visualizations of student trajectories through the school years 
can be used to identify common patterns among successful and unsuccessful students, or to 
infer which students are at-risk, sufficiently early to drive intervention (Bowers, 2010). Some of 
the visualization methods that have been used in education include heat maps (which 
incorporate much of the same information as scatterplots, but are more scalable – cf. Bowers, 
2010), learning curves (which show performance over time – cf. Koedinger et al., 2010), and 
learnograms (which show student alternation between activities over time – cf. Hershkovitz & 
Nachmias, 2008). 
 
      2e. Discovery with Models 
 
In discovery with models (Baker & Yacef, 2009; Hershkovitz et al., in press), the results of one 
data mining analysis are utilized within another data mining analysis. Most commonly, a model 
of some construct is obtained, generally through prediction methods. This model is then applied 
to data in order to assess the construct the model identifies. The predictions of the model are 
then used as input to another data mining method. There are several ways that discovery with 
models can be conducted. 
  
Perhaps the most common way that discovery with models is conducted is when a prediction 
model is used within another prediction model. In this situation, the initial model’s predictions 
(which represent predicted variables in the original model) become predictor variables in the 
new prediction model. In this way, models can be composed of other models, or based on other 
models, sometimes at multiple levels. For instance, prediction models of student robust learning 
(cf. Baker, Gowda, & Corbett, 2011) have generally depended on models of student meta-
cognitive behaviors (cf. Aleven et al., 2006), which have in turn depended on assessments of 
latent student knowledge (cf. Corbett & Anderson, 1995), which have in turn depended on 
models of domain structure (cf. Koedinger et al., 2012). 
  
A second common way that discovery with models is conducted is when a prediction model is 
used within a relationship mining analysis. In this type of research, the relationships between 
the initial model’s predictions and additional variables are studied. This enables a researcher to 
study the relationship between a complex latent construct (represented by the prediction model) 
and a wide variety of other variables. One example of this is seen in work by (Beal, Qu, & Lee, 
2008), who developed a prediction model of gaming the system and correlated it to student 
individual differences in order to understand which students are most likely to engage in gaming 
behavior. 
  
It is worth noting that the models used in discovery with models do not have to be obtained 
through prediction methods. These models can also be obtained through other approaches 
such as cluster analysis or knowledge engineering (Feigenbaum & McCorduck, 1983; Studer, 
Benjamins, & Fensel, 1998), where a human being rationally develops a model rather than 
using data mining to produce a model. The merits of knowledge engineering versus data mining 



for this type of analysis are out of scope for this chapter; greater discussion of this issue can be 
found in (Hershkovitz et al., in press).  
 
     2f. Tools for Conducting EDM/LA Methods 
 
      In recent years, dozens of tools have emerged for data mining and analytics, from both the 
commercial and academic sectors. The majority of papers published in the proceedings of the 
the EDM and LAK conferences, or published in the Journal of Educational Data Mining, and 
allied communities (such as Artificial Intelligence in Education, Intelligent Tutoring Systems, and 
User Modeling and Adaptive Personalization) use publicly  available tools including RapidMiner, 
R, Weka, KEEL, and SNAPP. These tools include algorithms that implement the methods 
discussed above, and provide support for readying data for use within these methods.  They 
also provide support for conducting statistical validation of model appropriateness for a range of 
uses (RapidMiner is particularly flexible for conducting sophisticated validation, leading to it 
becoming increasingly popular among EDM researchers), and for visualizing data. 
 
      In addition to these general-purpose tools, other tools are available for special purposes. For 
example, two competing packages are available for estimating student knowledge with 
Bayesian Knowledge Tracing (e.g., Chang et al., 2006; Baker et al., 2010). Tools for supporting 
the development of prediction models, by obtaining data on the predicted variable through hand-
annotating log files, have also recently become available (Rodrigo et al., 2012). Tools for 
displaying student learning over time and the pattern of student performance for different 
problems or items have been embedded into the Pittsburgh Science of Learning Center’s 
DataShop, a very large public database on student use of educational software (Koedinger et 
al., 2010). 
 
Some analytics tools are open source, allowing any researcher to develop add-ons that 
increase the core functionality of the tool. For example, R (http://www.r-project.org) is an open 
source statistical computing environment, and a very popular tool for statistical and advanced 
analytics (Muenchen, 2012). A valuable feature for R users is the ability for researchers to 
create specific R packages to address research needs in specific fields. Weka (Witten & Frank, 
2005; http://www.cs.waikato.ac.nz/ml/weka) is also open source, and a number of its tools for 
data mining have been incorporated into other tools, such as RapidMiner. Open platforms like R 
and Weka allow researchers to scrutinize the methods and algorithms used by other 
researchers.  
 
Commercial tools are driving the administrative use of analytics in many schools and districts. 
Enterprise tools such as IBM Cognos, SAS, and analytics offerings by learning management 
system providers such as Blackboard, and student systems, such as Ellucian, enable an 
integrated research/application approach. The questions being asked by administrators and 
educators can sometimes differ in focus from those being asked by EDM researchers. For 
example, a researcher may look for patterns in data, test algorithms, or develop analytics 
models to understand what contributed to learning success. In contrast, institutional analytics 
activities are likely to focus on improving learner success and providing support programs.  



 
3. Impacts on learning sciences  
 
Educational data mining and learning analytics have had several recent impacts on the learning 
sciences.  
 
One area where these methods have been particularly useful is in research on disengagement 
within educational software. Prior to the development of analytics, disengagement was difficult 
to measure (Corno & Mandinach, 1983), but EDM and LA methods have produced models that 
can infer disengaged behaviors in a fine-grained fashion. Automated detectors of a range of 
disengaged behaviors have been developed using prediction methods or knowledge 
engineering methods, including detectors of gaming the system (Baker, Corbett, & Koedinger, 
2004; Walonoski & Heffernan, 2006; Beal, Qu, & Lee, 2008; Muldner et al., 2011), off-task 
behavior (Baker, 2007; Cetintas et al., 2010), carelessness (San Pedro et al., 2011a), and 
inexplicable behaviors (Sabourin et al., 2011; Wixon et al., 2012).  
 
These detectors have been used to study the relationship between these behaviors and 
learning (Baker et al., 2004; Walonoski & Heffernan, 2006; Baker, 2007; Cocea et al., 2009; 
Baker, Gowda, & Corbett, 2011), including study of how behaviors lead to differences in 
learning (e.g., Cocea et al., 2009), and how seemingly disengaged behaviors might in some 
cases, paradoxically, reflect deep engagement (Shih, Koedinger, & Scheines, 2008). They have 
also been used to understand what affect is associated with these behaviors (Sabourin et al., 
2011; San Pedro et al., 2011b), and which learner individual differences are associated with 
these behaviors (Walonoski & Heffernan, 2006; Beal, Qu, & Lee, 2008).  
 
Detectors have also been embedded into intelligent tutors that adapt based on student 
disengagement. For instance, Baker et al. (2006) built an automated detector of gaming the 
system into a software agent that provides alternative exercises to students who game, both 
giving students an alternate way to learn material bypassed by gaming and making gaming 
behavior more time-consuming. Arroyo et al. (2007) used an automated detector of gaming to 
provide students with information on their recent gaming and to provide an opportunity to give 
meta-cognitive messages on how to use the software more effectively. Each of these 
approaches resulted in less gaming, and better learning.  
 
EDM and LA methods have similarly been useful in understanding student learning in various 
collaborative settings. Collaborative learning behaviors have been analyzed in order to 
determine which behaviors are characteristic of more successful groups and more successful 
learners, in multiple contexts, including computer-mediated discussions (McLaren et al., 2007, 
2010), online collaboration using software development tools (Kay et al., 2006), and interactive 
tabletop collaboration (Martinez et al., 2011). For instance, Prata and colleagues (2012) found 
that students who were contradicted by their partners when they were incorrect tended to learn 
more than students whose partners chose not to correct them. Dyke and colleagues (2012) 
found that off-topic discussions during collaborative learning are more harmful to learning within 



some parts of the learning process than during other parts – specifically, off-topic discussion is 
more harmful when learning basic facts than during discussion of problem-solving alternatives.  
Models based on student contributions to online discussion forums have even been able to 
predict those students’ final course grades (Ming & Ming, 2012). This work has been embedded 
into automated agents that scaffold more effective collaboration (McLaren et al., 2010; Dyke et 
al., 2012), and tools to support instructors in scaffolding their students’ collaboration (Martinez et 
al., 2012). 
 
4. Impacts on practice 
 
We have often observed a positive feedback loop between research and practice in EDM and 
LA--with research discoveries leading to changes in practice, which in turn lead to the possibility 
of studying new issues. One example of this can be seen in research over the years on student 
knowledge in Cognitive Tutors (cf. Koedinger & Corbett, 2006). In the mid-1990s, mastery 
learning (where a student keeps receiving problems of a certain type until he or she successfully 
demonstrates mastery) was introduced, based on assessments of student mastery from the 
EDM algorithm Bayesian Knowledge Tracing (Corbett & Anderson, 1995). A prerequisite 
structure – e.g. an ordering of which content must be learned prior to other content because it is 
needed to understand the later content – was developed for the content in Cognitive Tutors and 
applied in the design of tutor lessons. However, freedom was given to instructors to deviate 
from the planned prerequisite structure in line with their pedagogical goals – in other words, if an 
instructor thought that a prerequisite topic was not actually needed for a later topic, they could 
skip the prerequisite topic. This enabled later analyses of the pedagogical value of the 
prerequisite structure  (Vuong, Nixon, & Towle, 2011). These results found that it is 
disadvantageous to students when prerequisite structure is ignored by instructors.  
 
The development of analytics around social learning and discourse have been important in 
increasing awareness of the impact of social dimensions of learning and the impact of learning 
environment design on subsequent learning success. Several open online courses, such as 
etmooc (http://etmooc.org) and edfuture (http://edfuture.mooc.ca) have incorporated principles 
from social network theory (and related analytics) in the design of distributed, networked 
learning systems, in contrast with more centralized platforms such as learning management 
systems. For example, the analytics options available to researchers in a platform where data 
collection is centralized (as in an LMS) differ from the analytics approaches possible when data 
is distributed and fragmented across numerous technical and social spaces. A predictive learner 
success tool such as Purdue Signals draws data from LMS interactions and from the student 
information system. In contrast, learning in distributed social networks produces data that 
reflects learner interest and engagement across multiple spaces that are under the control of 
individuals. As analytics of learning move into a broader range of settings—such as informal 
interactions through peer networks in universities, workplace learning, or lifeline learning--EDM 
and LA can help to evaluate how learning happens across various settings and how patterns of 
engagement or predictors of success differ in distributed versus centralized learning systems.. 
 
5.     EDM/LA and the Learning Sciences: to the future 



 
Educational data mining and learning analytics, despite being new research areas, have already 
made contributions to the learning sciences and to practice. The current trend suggests that this 
contribution will continue, and even increase in the years to come. 
 
One key trend is that these methods have been applied to an ever-widening range of data 
sources. Much of the early work in EDM was conducted within intelligent tutoring systems (as 
described in Koedinger and Corbett, 2006) and much of the work in LA began in web-based e-
Learning and social learning environments. In recent years, this has extended to a wider variety 
of educational situations, including data from student collaboration around learning resources 
(Martinez et al., 2012), science simulations (Sao Pedro et al., 2013), teacher newsgroups (Xu & 
Recker, 2011), and school district grade data systems (Bowers, 2010). 
 
A second key trend, which can be seen in the examples above, is the use of EDM methods to 
answer an expanding range of research questions, in an expanding range of areas represented 
in this handbook: computer games (Steinkuller and Squire, this volume; cf. Hernandez, Sucar, & 
Conati, 2009; Kerr & Chung, 2012), argumentation (Andriessen & Baker, this volume; cf. Lynch, 
Pinkwart, Ashley, & Aleven, 2008; McLaren, Scheuer, & Miksatko, 2010), computer-supported 
collaborative learning (Stahl et al., this volume;  Kay et al., 2006; cf. Dyke et al., 2012), learning 
in virtual worlds (Kafai and Dede, this volume; cf. Sil et al., 2012), and teacher learning 
(Fishman et al., this volume; cf. Xu & Recker, 2011).  
 
As EDM and LA become used in a wider variety of domains, by researchers from a wider variety 
of disciplines, and within learning systems of a wider variety of types, we will see the potential of 
these approaches for enhancing both practice and theory in the learning sciences. As this 
occurs, there will be opportunities to conduct finer-grained, broader-scale research in the 
learning sciences, benefiting the field and the learners impacted by developments in the field. .  
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