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ABSTRACT 

Research shows that middle school is an important juncture for a 

student where he or she starts to be conscious about academic 

achievement and thinks about college attendance. It is already 

known that access to financial resources, family background, 

career aspirations and academic ability are indicative of a 

student’s choice to attend college; though these variables are 

interesting, they do not necessarily give sufficient actionable 

information to instructors or guidance counselors to intervene for 

individual students. However, increasing numbers of students are 

using educational software at this phase of their education, and 

detectors of specific aspects of student learning and engagement 

have been developed for these types of learning environments. If 

these types of models can be used to predict college attendance, 

it may provide more actionable information than the previous 

generation of predictive models. In this paper, we predict college 

attendance from these types of detectors, in the context of 3,747 

students using the ASSISTment system in New England, 

producing detection that is both successful and potentially more 

actionable than previous approaches; we can distinguish between 

a student who will attend college and a student who will not 

attend college 68.6% of the time.  
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1. INTRODUCTION 
The processes leading a student to choose to attend college starts 

early, and decisions can begin to solidify as early as middle 

school (ages 12-14). Especially in the United States, successful 

learning experiences which develop key skills build positive self-

beliefs, interests, goals and actions, making students likely to 

actively seek and plan higher educational goals and career 

aspirations [31]  As students go through middle school, they 

increasingly find themselves engaged or disengaged from school 

and learning. This process is driven in part by changes in 

students’ self-perceptions, whether they see themselves as smart 

and capable of taking the courses in high school. This leads to 

students making decisions about how academic achievement, 

certain careers, and college majors fit into their self-perception 

[14]. 

It is during middle school that students either start to value 

academic achievement or begin to get off track and start to 

become frustrated and disengaged in school [8]. Research 

findings suggest that middle school students often think about 

going to college but fail to get support in planning how to 

achieve this [14].The transition to middle school in the United 

States has been associated with a decline in academic 

achievement, performance motivation, and self-perception [33]. 

For students who fail to develop a plan (or obtain support) for a 

college future, this has a dramatic effect on what eventually 

happens to the students.   

Disengagement not only leads to negative attitudes about higher 

education, but also to poorer learning [17, 27, 29]. This leads to 

an unsuccessful learning experience when they reach high 

school, ultimately leading to dropping out, or disinterest in 

pursuing post-secondary education [7]. Multiple studies have 

shown that it is possible to predict which students will eventually 

drop out of high school,  as early as late elementary or middle 

school [7, 9, 10, 35], with evidence that some particularly 

predictive factors include problem behaviors [7, 35] and shifts in 

academic achievement over time [9, 10]. Indicators of fairly 

extreme forms of disengaged behavior (low attendance, 

misconduct) and academic failure in sixth grade have been 

shown to be strong predictors of students falling off the path 

towards graduation and therefore eventual college attendance, 

within longitudinal analysis [7].  

By contrast, students who have already made college plans when 

they are in middle school tend to be more likely to attend college 

in spite of challenges [13]. They tend to plan appropriate courses 

to take when they enter high school, and get involved in relevant 

extracurricular activities that contribute to college admission 

[14]. In effect, they become interested in achieving a good 

academic record. Thus, examining the factors that influence 

students’ engagement and disengagement during middle school 

is crucial so as to understand better the factors that lead students 

to fail to attend college, and the possible paths to re-engaging 

students.  

However, one of the major limitations to this past research is that 

it identifies changes in student engagement only through fairly 

strong indicators of disengagement, such as failing grades [9, 10, 

11], problem behaviors such as violence in school [47] and non-

attendance [35]. By the time these indicators are commonplace, it 

may be quite late to make an intervention. If it were possible to 

identify useful and actionable antecedents to these changes, it 

might be possible to intervene more effectively. 

One potential source of data on early change in engagement is 

the log files from educational software. In recent years, the use of 



educational software at the middle school level has expanded 

considerably, with systems such as ASSISTments [40] being used 

by rapidly increasing numbers of students. At the same time, 

educational data mining (EDM) techniques have been applied to 

logs from educational software to model a range of affect and 

engagement constructs, including gaming the system [4], off-task 

behavior [1], carelessness [45], boredom [22, 37, 44], frustration 

[22, 37, 44], and engaged concentration [22, 37, 44],. Automated 

detectors of disengaged behaviors can predict differences in 

learning, both in the relatively short term [cf. 17] and over the 

course of a year [26, 37]. Within this paper, we extend this work 

to study how learning and engagement in middle school – as 

assessed by this type of automated detector – can be used to 

predict college enrollment. To our knowledge, this is the first 

study that aims at predicting college enrollment from affect and 

engagement inferred from the logs of educational software used 

years earlier. We conduct this research in a data set of 3,747 

students who used the ASSISTment system [40], between 2004 

and 2007. We discuss which aspects of learning and engagement 

predict college enrollment, and conclude with a discussion of 

potential implications for the design and interventions of 

interactive educational systems for sustained attendance and 

engagement in school.  

2. METHODOLOGY 

2.1 The ASSISTment System 
Within this paper, we investigate this issue within the context of 

ASSISTments. The ASSISTment system, shown in Figure 1, [40] 

is a free web-based tutoring system for middle school 

mathematics that assesses a student’s knowledge while assisting 

them in learning, providing teachers with detailed reports on the 

skills each student knows. The ASSISTment system, shown in 

Figure 1, provides feedback on incorrect answers. Within the 

system, each mathematics problem maps to one or more 

cognitive skills. When students working on an ASSISTment 

answer correctly, they proceed to the next problem. If they 

answer incorrectly, they are provided with scaffolding questions 

which break the problem down into its component steps. The last 

step of scaffolding returns the student to the original question (as 

in Figure 2). Once the correct answer to the original question is 

provided, the student is prompted to go to the next question. 

2.2 Data 

2.2.1 ASSISTments Data 
Action log files from the ASSISTment system were obtained for 

a population of 3,747 students that came from middle schools in 

New England, who used the system at various times starting 

from school years 2004-2005 to 2006-2007 (with a few students 

continuing tutor usage until 2007-2008 and 2008-2009). These 

students were drawn from three districts who used the 

ASSISTment system systematically during the year. One district 

was urban with large proportions of students requiring free or 

reduced-price lunches due to poverty, relatively low scores on 

state standardized examinations, and large proportions of 

students learning English as a second language. The other two 

districts were suburban, serving generally middle-class 

populations. Overall, the students made 2,107,108 actions within 

the software (where an action consisted of making an answer or 

requesting help), within 494,150 problems, with an average of 

132 problems per student. Knowledge, affect, and behavior 

models were applied to this dataset, creating features that could 

be used for our final prediction model of college enrollment. 

 

 

Figure 1. Example of an ASSISTments Problem. If a student 

gets it incorrect, scaffolding problems are there to aid the 

student in eventually getting the correct answer. 

 

 

Figure 2. Example of Scaffolding in an ASSISTments 

Problem. 

 



2.2.2 College Enrollment Data 
For college enrollment information, enrollment records of these 

3,747 students were requested from the National Student 

Clearinghouse (http://www.studentclearinghouse.org). For the 

purposes of the analyses in this paper, we identified solely 

whether each student was enrolled in a college or not, and used 

this as our labels in training our model. Additional information 

(such as whether the student graduated from college) is generally 

available from the Clearinghouse, but will not be available for 

these students for a few more years.  

2.3 Creation of Model Features 
In order to predict and analyze college enrollment, we distilled a 

range of features from the log files of ASSISTments, including 

student knowledge estimates, student affect (boredom, engaged 

concentration, confusion), student disengaged behaviors (off-

task, gaming the system, carelessness), and other information of 

student usage (the proportion of correct actions and the number 

of first attempts on problems made by the student, a proxy for 

overall usage). These features were either directly distilled from 

the logs or obtained from automated detectors applied to the data 

set.  

2.3.1 Student Knowledge Features 
Estimates of student knowledge were computed using Bayesian 

Knowledge Tracing (BKT) [20], a model used in several ITSs to 

estimate a student’s latent knowledge based on his/her 

observable performance. This model can predict how difficult the 

current problem will be for the current student, based on the 

skills involved in that problem. As such, this model can 

implicitly capture the tradeoff between difficulty and skill for the 

current context. This model can inform us whether student skill 

is higher than current difficulty (resulting in a high probability of 

correctness), when current difficulty is higher than student skill 

(resulting in a low probability of correctness), and when 

difficulty and skill are in balance (medium probabilities of 

correctness). To assess student skill, BKT infers student 

knowledge by continually updating the estimated probability a 

student knows a skill every time the student gives a first 

response to a new problem. It uses four parameters, each 

estimated separately per skill – LO, the initial probability the 

student knows the skill; T, the probability of learning the skill at 

each opportunity to use that a skill; G, the probability that the 

student will give a correct answer despite not knowing the skill; 

and S, the probability that the student will give an incorrect 

answer despite knowing the skill. In this model, the four 

parameters for each skill are held constant across contexts and 

students (variants of BKT relax these assumptions). BKT uses 

Bayesian algorithms after each student’s first response to a 

problem in order to re-calculate the probability that the student 

knew the skill before the response. Then the algorithm accounts 

for the possibility that the student learned the skill during the 

problem in order to compute the probability the student will 

know the skill after the problem [20]. With the data from the 

2004-2005 to 2006-2007 logs, BKT model parameters were fit by 

employing brute-force grid search [cf. 3]. 

2.3.2 Affect and Behavior Features 
To obtain affect and behavior assessments, we leverage existing 

detectors we developed of student affect and engaged/disengaged 

behavior within the ASSISTment system [37], to help us 

understand student affect and behavior across contexts. Detectors 

of three affective states are utilized: engaged concentration, 

boredom, and confusion. Detectors of three disengaged behaviors 

are utilized: off-task, gaming, and slip or carelessness. These 

detectors of affect and behavior are identical to the detectors 

used in [37]. They were developed in a two-stage process: first, 

student affect labels were acquired from the field observations 

(reported in [37]), and then those labels were synchronized with 

the log files generated by ASSISTments at the same time 

(forming our first dataset). This process resulted in automated 

detectors that can be applied to log files at scale, specifically the 

data set used in this project (the 2004-2005 to 2006-2007 data 

set). To enhance scalability, only log data was used as the basis 

of the detectors, instead of using physical sensors. The research 

presented in this paper could not have been conducted if physical 

sensors were used. The detectors were constructed using only log 

data from student actions within the software occurring at the 

same time as or before the observations, making our detectors 

usable for automated interventions, as well as the discovery with 

models analyses presented in this paper.  

The affect detectors’ predictive performance were evaluated 

using A' [28] and Cohen’s Kappa [18]. An A' value (which is 

approximately the same as the area under the ROC curve [28]) of 

0.5 for a model indicates chance-level performance for correctly 

determining the presence or absence of an affective state in a 

clip, and 1.0 performing perfectly. Cohen’s Kappa assesses the 

degree to which the model is better than chance at identifying the 

affective state in a clip. A Kappa of 0 indicates chance-level 

performance, while a Kappa of 1 indicates perfect performance. 

A Kappa of 0.45 is equivalent to a detector that is 45% better 

than chance at identifying affect. 

As discussed in [37], all of the affect and behavior detectors 

performed better than chance. Detector goodness was somewhat 

lower than had been previously seen for Cognitive Tutor Algebra 

[cf. 6], but better than had been seen in other published models 

inferring student affect in an intelligent tutoring system solely 

from log files (where average Kappa ranged from below zero to 

0.19 when fully stringent validation was used) [19, 22, 44]. The 

best detector of engaged concentration involved the K* 

algorithm, achieving an A' of 0.678 and a Kappa of 0.358. The 

best boredom detector was found using the JRip algorithm, 

achieving an A' of 0.632 and a Kappa of 0.229. The best 

confusion detector used the J48 algorithm, having an A’ of 0.736, 

a  Kappa of 0.274. The best detector of off-task behavior was 

found using the REP-Tree algorithm, with an A’ value of 0.819, 

a Kappa of 0.506. The best gaming detector involved the K* 

algorithm, having an A’ value of 0.802, a Kappa of 0.370. These 

levels of detector goodness indicate models that are clearly 

informative, though there is still considerable room for 

improvement. The detectors emerging from the data mining 

process had some systematic error in prediction due to the use of 

re-sampling in the training sets (models were validated on the 

original, non-resampled data), where the average confidence of 

the resultant models was systematically higher or lower than the 

proportion of the affective states in the original data set. This 

type of bias does not affect correlation to other variables since 

relative order of predictions is unaffected, but it can reduce 

model interpretability. To increase model interpretability, model 

confidences were rescaled to have the same mean as the original 

distribution, using linear interpolation. Rescaling the confidences 



this way does not impact model goodness, as it does not change 

the relative ordering of model assessments. 

2.3.2.1 Application of Affect and Behavior Models to 

Broader Data Set 
Once the detectors of student affect and behavior were 

developed, they were applied to the data set used in this paper. 

As mentioned, this data set was comprised of 2,107,108 actions 

in 494,150 problems completed by 3,747 students in three school 

districts. The result was a sequence of predictions of student 

affect and behavior across the history of each student’s use of the 

ASSISTment system. 

2.3.2.2 Carelessness Detection using Logs 
Different from the process above, the incidence of carelessness 

within the Cognitive Tutor was traced with a model designed to 

assess “slips” [2]. Slips in that paper are operationalized in a 

fashion essentially identical to prior theory of how to identify 

careless errors [16]. The model used in [2], termed the 

Contextual Slip model, contextually estimates the probability 

that a specific student action indicates a slip/carelessness, 

whenever the student reaches a problem step requiring a specific 

skill, but answers incorrectly.   The probability of 

carelessness/slip is assessed contextually, and is different 

depending on the context of the student error. The probability 

estimate varies based on several features of the student action 

and the situation in which it occurs, including the speed of the 

action, and the student’s history of help-seeking from the tutor. 

As such, the estimate of probability of carelessness/slip is 

different for each student action.  

The Contextual Slip model is created using the BKT approach 

previously discussed. Note that in the BKT model – used in 

creating the Contextual Slip model  – the four parameters for 

each skill are invariant across the entire context of using the 

tutor, and invariant across students. We use BKT as a baseline 

model to create first-step estimations of the probability that each 

action is a contextual slip. These estimations are not the final 

Contextual Slip model, but are used to produce it. Specifically, 

we use BKT to estimate whether the student knew the skill at 

each step. In turn, we use these estimates, in combination with 

Bayesian equations, to label incorrect actions with the probability 

that the actions were slips, based on the student performance on 

successive opportunities to apply the rule. More specifically,  

given the probability that the student knows the skill at a specific 

time, Bayesian equations and the static BKT parameters are 

utilized to compute labels for the Slip probabilities for each 

student action (A) at time N, using future information (two 

actions afterwards – N+1, N+2). In this approach, we infer the 

probability that a student’s incorrectness at time N was due to 

not knowing the skill, or whether it is due to a slip. The 

probability that the student knew the skill at time N can be 

calculated, given information about the actions at time N+1 and 

N+2 (AN+1,N+2), and the other parameters of the Bayesian 

Knowledge Tracing model: 

P(AN is a Slip | AN is incorrect) = P(Ln | AN+1,N+2 ).  (1) 

This gives us a first estimate that a specific incorrect answer is a 

slip. However, this estimate uses data on the future, making it 

impossible to use to assess slip in real-time. In addition, there is 

considerable noise in these estimates, with estimates trending to 

extreme values that over-estimate slip in key situations due to 

limitations in the original BKT model [2]. But these estimated 

probabilities of slip can be used to produce a less noisy model 

that can be used in real time, by using them as training labels 

(e.g. inputs) to machine-learning. Specifically, a linear regression 

model is created that predicts slip/carelessness contextually.  The 

result is a model that can now predict at each practice 

opportunity whether an action is a slip, using only data about the 

action itself, without any future information. This model has 

been shown to predict post-test scores, even after student 

knowledge is controlled for [3]. 

Once these labels are obtained from BKT, the labels are 

smoothed by training models with each student action originally 

labeled with the probability estimate of slip occurrence, using 

information on that student action generated on our tutor logs. 

For each action, a set of numeric or binary features from the 

ASSISTments logs were distilled, based on earlier work by [5]. 

As in previous work to model slipping, the features extracted 

from each student action within the tutor were used to predict the 

probability that the action represents a slip/carelessness. The 

prediction took the form of a linear regression model, fit using 

M5-prime feature selection in the RapidMiner data mining 

package [32]. This resulted in numerical predictions of the 

probability that a student action was a careless error, each time a 

student made a first attempt on a new problem step. Linear 

regression was chosen as an appropriate modeling framework 

when both predictor variables and the predicted variable are 

numeric. In addition, linear regression functions well with noisy 

educational data, creating relatively low risk of finding an “over-

fit” model that does not function well on new data. 

Six-fold student-level cross-validation [24] was conducted to 

evaluate the carelessness detector’s goodness. Cross-validating at 

this level allows us to assess whether the model will remain 

effective for new students drawn from the same overall 

population of students studied. Carelessness models were trained 

separately per school year of the ASSISTments data set. They 

were assessed in terms of cross-validated correlation. The 

carelessness models trained within the ASSISTments data 

achieved a cross-validation correlation of r = 0.458 on the 

average.  

2.4 Logistic Regression 
Models were built to predict whether a student attended college. 

Aggregate predictor variables were created by taking  the average 

of the predictor feature values for each student, resulting in one 

record per student (in other words, taking the average boredom 

per student, average confusion per student, etc.). 

A multiple-predictor logistic regression model was fitted to 

predict whether a student will enroll in college from a 

combination of features of his or her student affect, engagement, 

knowledge and other information on student usage (the 

proportion of correct actions,  and the number of first attempts on 

problems made by the student, a proxy for overall usage) of a 

tutoring system during middle school. We used logistic 

regression analysis since we have a dichotomous outcome – 

whether or not the student would be enrolled in college – 

resulting in a non-linear relationship between our predictors and 

outcome variable. Choosing logistic regression allows for 

relatively good interpretability of the resultant models, while 

matching the statistical approach used in much of the other work 

on predicting college attendance [12, 23, 36, 46]. In essence, the 



logistic model predicts the logit (natural logarithm of an odds 

ratio [cf. 39]) of an outcome variable from a predictor or set of 

predictors. The odds ratio in logistic regression is the odds of an 

event occurring given a particular predictor, divided by the odds 

of an event occurring given the absence of that particular 

predictor. An odds ratio over 1.0 signifies that the independent 

variable increases the odds of the dependent variable occurring; 

correspondingly, an odds ratio under 1.0 signifies that the 

independent variable decreases the odds of the dependent 

variable occurring.   

Features were selected using a simple backwards elimination 

feature selection, based on each parameter’s statistical 

significance. All predictor variables were standardized (using z-

scores), in order to increase interpretability of the resulting odds 

ratios (note that this does not impact model goodness or 

predictive power in any fashion). The odds ratio indicates the 

odds that a class variable increases per one unit change of a 

predictor (per one SD change for standardized predictors). 

Standardizing the predictors enables us to show a clear indication 

of each predictor’s contribution to the class variable (college 

enrollment).  

3. RESULTS 
Before developing the model, we looked at our original, non-

standardized features and how their values compare between 

those who were labeled to have attended college and those who 

have not (Table 1).   

Table 1. Features for Students who Attended College (1, n = 

2166) and did not Attend college (0, n = 1581)  

 Coll

-ege 

Mean Std. 

Dev. 

Std. 

Error 

Mea

n 

t-value 

Slip/ 

Carelessness 

0 0.132 0.066 0.002 -13.361 

(p<0.01) 1 0.165 0.077 0.002 

Student 

Knowledge 

0 0.292 0.151 0.004 -15.481 

(p<0.01) 1 0.378 0.180 0.004 

Correctness 0 0.382 0.161 0.004 -17.793 

(p<0.01) 1 0.483 0.182 0.004 

Boredom 0 0.287 0.045 0.001 5.974 

(p<0.01) 1 0.278 0.047 0.001 

Engaged 
Concentration 

0 0.483 0.041 0.001 -11.979 

(p<0.01) 1 0.500 0.044 0.001 

Confusion 0 0.130 0.054 0.001 5.686 

(p<0.01) 1 0.120 0.052 0.001 

Off-Task 0 0.304 0.119 0.003 1.184 

p=0.237 1 0.300 0.116 0.002 

Gaming 0 0.041 0.062 0.002 8.862 

(p<0.01) 1 0.026 0.044 0.001 

Number of 

First Actions 

0 114.500 91.771 2.308 -8.673 

(p<0.01) 1 144.560 113.357 2.436 

From Table 1, initial observations show that average knowledge 

estimate, average correct, number of first actions, average 

slips/carelessness, and average engaged concentration had higher 

mean values for students who attended college. Average 

boredom, average confusion, average off-task and average 

gaming had higher mean values for those who did not attend 

college. Conducting an independent samples t-test (equal 

variances assumed) indicates that, with the exception of off-task, 

the difference of means of each feature between the two groups 

are statistically significant. 

These observations align with the individual effects of each 

feature on the prediction of college enrollment. For example, 

there is a strong positive relationship between college enrollment 

and average correct answers (CollegeEnrollment = 0.612 

Correctness + 0.346, 2(df = 1, N = 3747) = 304.141, p < 0.001, 

Odds Ratio (Correctness) = 1.844), indicating that success in 

ASSISTments lead to higher probability of attending college. The 

same strong positive relationship is seen between college 

enrollment and student knowledge estimate as the student learns 

with ASSISTments (CollegeEnrollment = 0.543 Student 

Knowledge + 0.345, 2(df = 1, N = 3747) = 236.683, p < 0.001, 

Odds Ratio (StudentKnowledge) = 1.722). Engaged 

Concentration is also shown to positively predict college 

attendance (CollegeEnrollment = 0.403 Engaged Concentration + 

0.325, 2(df = 1, N = 3747) = 140.557, p < 0.001, Odds Ratio 

(Engaged Concentration) = 1.497), a finding that supports 

studies relating this affective state to effective learning [21, 42]. 

And the more a student uses ASSISTments, the more likely that 

student will attend college (CollegeEnrollment = 0.321 Number 

of First Actions + 0.327, 2(df = 1, N = 3747) = 79.159, p < 

0.001, Odds Ratio(Number of First Actions) = 1.378). One non-

intuitive relationship is between carelessness and college 

enrollment. Taken by itself, the more a student becomes careless 

or commits more slips, the more likely the student is to attend 

college (CollegeEnrollment = 0.477 Slip/Carelessness + 0.338, 

2(df = 1, N = 3747) = 185.208, p < 0.001, Odds 

Ratio(Slip/Carelessness) = 1.612), evidence in keeping with past 

results that careless errors are seen in more successful students 

[16]. 

Conversely, the more a student is bored, the less likely that 

student is to attend college (CollegeEnrollment = -0.197 

Boredom + 0.318, 2(df = 1, N = 3747) = 35.387, p < 0.001, 

Odds Ratio(Boredom) = 0.821) a result in keeping with past 

evidence that boredom is associated with poorer learning [38], as 

well as high school dropout [25, 34, 43]. Confusion also is shown 

to be negatively associated with eventual college enrollment 

(CollegeEnrollment = -0.188 Confusion + 0.317, 2(df = 1, N = 

3747) = 32.051, p < 0.001, Odds Ratio(Confusion) = 0.829). 

Gaming the system is also negatively correlated with eventual 

college enrollment (CollegeEnrollment = -0.313 Gaming + 

0.314, 2(df = 1, N = 3747) = 78.821, p < 0.001, Odds Ratio 

(Gaming) = 0.731), perhaps unsurprising given its relationship 

with poorer learning [17]. 

A model for college enrollment including all data features was 

developed using Logistic Regression, and cross-validated at the 

student level (5-fold). The full data set model (Table 2) which 

included all features achieved a cross-validated A’ of 0.686 and 

cross-validated Kappa value of 0.239. This model was 

statistically significantly better than a null (intercept-only) 

model, 2(df = 9, N = 3747) = 390.146, p < 0.001. Statistical 



significance was computed for a non-cross-validated model, as is 

standard practice. 

 

Table 2. Full Data Set Model of College Enrollment 

Features Coefficient 
Chi-

Square 

p-

value 

Odds 

Ratio 

Student 

Knowledge  
1.078 16.193 <0.001 2.937 

Slip/ 

Carelessness 
-1.100 25.873 <0.001 0.333 

Correctness 0.758 33.943 <0.001 2.133 

Boredom 0.069 0.308 0.579 1.071 

Engaged 

Concentration 
-0.175 2.207 0.137 0.839 

Confusion 0.201 20.261 <0.001 1.223 

Off-Task -0.036 0.188 0.665 0.965 

Gaming -0.047 0.720 0.396 0.954 

Number of 

First Actions 
0.269 27.094 <0.001 1.308 

Constant 0.354 99.735 <0.001 1.421 

 

This model can be refined by removing all features that are not 

statistically significant, using a backwards elimination procedure. 

Our final model (Table 3) achieves a cross-validated A’ of 0.686 

and a cross-validated Kappa value of 0.247, almost identical to 

the initial model with a full data set. The reduced model is both 

more parsimonious and more interpretable, so it is preferred.  (It 

is not more generalizable within the initial data set, but its 

parsimony increases the probability that it will be generalizable 

to entirely new data sets). This model is also statistically 

significantly better than the null model, 2(df = 6, N = 3747) = 

386.502, p < 0.001. Our final model also achieved a fit of R2 

(Cox & Snell) = 0.098, R2 (Nagelkerke) = 0.132, indicating that 

our predictors explaining 9.8% to 13.2% of the variance of those 

who attended college. Note that for our models, our R2 values 

serve as measures of effect sizes; when converted to correlations, 

they represent moderate effect sizes in the 0.31-0.36 range.  

 

Table 3. Final Model of College Enrollment 

Features Coefficient 
Chi-

Square 
p-value 

Odds 

Ratio 

Student 

Knowledge  
1.119 17.696 <0.001 3.062 

Correctness 0.698 47.352 <0.001 2.010 

Number of First 

Actions 
0.261 28.740 <0.001 1.298 

Slip/ 

Carelessness 
-1.145 28.712 <0.001 0.318 

Confusion 0.217 24.803 <0.001 1.242 

Boredom 0.169 12.249 <0.001 1.184 

Constant 0.351 100.011 <0.001 1.420 

 

As can be seen in Table 3, the first three predictors (student 

knowledge, correctness and number of first actions) maintained 

the same directionality as in Table 1, but slip/carelessness, 

confusion and boredom flipped direction when incorporated into 

the final multiple logistic regression model, though each 

remained significant. For example, in this model, the likelihood 

of college enrollment increases with boredom, once the other 

variables are taken into account (e.g. once we control for student 

knowledge, software use, and so on, and other forms of 

disengagement). This may be because once we remove 

unsuccessful bored students, all that may remain are students 

who become bored because the material is too easy [cf. 37].   

Similarly, once we control for other variables in the model, 

confusion is positively associated with college attendance. Again, 

once we remove students who are both confused and 

unsuccessful, all that is likely to remain are students who 

addressed their confusion productively [cf. 30]. For carelessness, 

once we control for other variables in the model, it is negatively 

associated with college attendance. Once we remove careless but 

successful students, all that is likely to remain are students who 

haven't overcome their carelessness [cf. 16]. 

4. DISCUSSION AND CONCLUSION 
Many factors influence a student’s decision to enroll in college. 

A lot of them external or social factors: financial reasons, 

parental support and school support. Another major factor, 

however, is one’s ability and engagement, which develop over 

early years, and begin to manifest strongly during the middle 

school years. In this paper, we apply fine-grained models of 

student knowledge, student affect (boredom, engaged 

concentration, confusion) and behavior (off-task, gaming, 

slip/carelessness) to data from 3,747 students using educational 

software over the course of a year (or more) of middle school to 

understand how the development of student learning and 

engagement during this phase of learning, can predict college 

enrollment. A logistic regression model is developed, and we 

find that a combination of features of student engagement and 

student success in ASSISTments can distinguish a student who 

will enroll in college 68.6% of the time. In particular, boredom, 

confusion, and slip/carelessness are significant predictors of 

college enrollment both by themselves and contribute to the 

overall model of college enrollment.  

The relationships seen between boredom and college enrollment, 

and gaming the system and college enrollment indicate that 

relatively weak indicators of disengagement are associated with 

lower probability of college enrollment. Success within middle 

school mathematics (indicated by correct answers and high 

probability of knowledge in ASSISTments) is positively 

associated with college enrollment , a finding that aligns with 

studies that conceptualize high performance during schooling as 

a sign of college readiness [41] and models that suggest that 

developing  aptitude predicts college attendance [15, 23].  

Findings in our data and final model support existing theories 

about indicators of college enrollment (academic achievement, 

grades). More importantly, it further sheds light on behavioral 

factors the student experiences in classrooms (which are more 

frequently and in many ways more actionable than the behaviors 

which result in disciplinary referrals). As the results here 

suggest, affect and disengagement are associated with college 

enrollment, suggesting that in-the-moment interventions 



provided by software (or suggested by software to teachers) may 

have unexpectedly large effects, if they address negative affect 

and disengagement. Confused students can be properly guided 

and encouraged to resolve their confusion. Bored students can be 

provided with greater novelty to reduce boredom or support in 

emotional self-regulation. Students who game the system can be 

given alternate opportunities to learn material bypassed through 

gaming, as in past successful interventions. Further work can be 

explored in the interactions of these various factors which 

influence our predictions. 

Future endeavors in evaluating college attendance through data 

mining of interaction logs (pre-college) can further benefit from 

including additional possible interaction features in our model. 

Other machine learning algorithms or modeling can also be 

employed in our data in further understanding our research 

problem. It is possible that other classifiers, such as decision 

trees or support vector machines, may have performed better in 

predicting college enrollment. However, interpretability of the 

models may be reduced for these algorithms. Together with 

findings in this paper, further design considerations for 

educational software can be investigated that can influence not 

only effective learning during secondary education, but 

contribute as well to college interest and readiness. 
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