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Abstract. Data-mined models often achieve good predictivergup but some-
times at the cost of interpretability. We investegaere if selecting features to
increase a model’s construct validity and intergiodity also can improve the
model’s ability to predict the desired construttée do this by taking existing
models and reducing the feature set to increasstremb validity. We then
compare the existing and new models on their ptigdicapabilities within a
held-out test set in two ways. First, we analyze iodels’ overall predictive
performance. Second, we determine how much studerhaction data is nec-
essary to make accurate predictions. We find these reduced models with
higher construct validity not only achieve bettgreement overall, but also
achieve better prediction with less data. This wisrkonducted in the context
of developing models to assess students’ inquiily ak designing controlled
experiments and testing stated hypotheses withaieace inquiry microworld.
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1 Introduction

Feature selection, the process of pre-selectinifes before running a data mining
algorithm, can improve the performance of data ngralgorithms (cf. [1]). Several
automated approaches exist for finding optimalueasets such as filtering redundant
features [2], conducting heuristic searches (d), [&sing genetic algorithms [4], and
clustering [5]. These procedures, though powerfidy yield sets that domain experts
would not intuitively expect to align with the tatgclass (construct). An alternative is
to select features that specifically improve modsdsistruct validity.

This alternative is motivated by our prior workdaveloping automated detectors
of two scientific inquiry behaviors, designing caniled experiments and testing stat-
ed hypotheses, within a science microworld [6].bLald them, we first filtered fea-
tures that correlated highly with each other, @mhtconstructed J48 decision trees.
The resulting detectors worked well under studewéd cross-validation. However,
upon inspecting them more closely, we noticed steaatures considered theoretically
important to the constructs [7], [8], [9] were elivated at the filtering step. Also,
other features without theoretical justificatiom@ned. We believe this feature selec-



tion process may have yielded a feature set tlthindt represent all aspects of the
behaviors, which in turn may have negatively impddheir predictive performance.

Thus, we explore in this paper whether selectirguies with the goal of increas-
ing a model’s construct validity and interpretalilcan also improve a model’s pre-
dictive ability. We do so by comparing two typesdeftectors for each behavior. One
type is built with an automated feature selectimategy used in our original detectors
[6]. The other type is built using a combinationm&nual selection and statistics to
select successful features that theoretically atigine closely with the behaviors.

We compare the predictive performance of the twmesyof detectors against a
held-out test set in two ways. First, we compare dbtectors’ ability to predict be-
havior at the level of a full data collection cycléhis enables us to measure how well
the detectors can be used for assessing performanta identifying which students
need scaffolding when they claim to finish collagtidata. In addition, it is useful to
have detectors that can identify a student’s ldcgkdl as quickly as possible so the
software can “jump in” and support the student @snsas they need it to prevent
frustration, floundering, or haphazard inquiry [10hus, the second way we compare
detectors is to determine how much student dateeésled before inquiry behavior
can be accurately predicted. The faster detecamamake valid inferences, the faster
the system can help the students who need it.

2 Background and Datasets

2.1 Learning Environment and Behaviors of Interest

The Science Assistments Phase Change Microworld[]8], designed for use in
middle school science classes, aims to foster gtatating about melting and boiling
processes of a substance via semi-structured gdntuiry. A typical activity re-
quires students to determine if one of four vagal{like amount of substance) affects
properties of a substance’s phase change (likaating point). Students address this
goal by conducting inquiry in four phases: obsemgpothesize, experiment, and
analyze data. Each one exercises different incgkiiis. The behaviors of interest for
the analyses presented here, designing controdpdrienents and testing stated hy-
potheses behaviors, occur in the experiment phase.

In the experiment phase, students collect datalg}rby designing and running ex-
periments with a phase change simulation. Studsmtschange the simulation’s vari-
able values, run, pause and reset the simulatiwhyveew previously collected trials
and stated hypotheses. Briefly, when collectingdstudents design controlled exper-
iments when they generate data that support detergnthe effects of independent
variables on outcomes. They test stated hypothekes they generate data with the
intent to support or refute an explicitly stategbthesis. More information about the
microworld and constructs can be found in [6].
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Fig. 1. Example sequence of student actions for a phamegehactivity. Two clipsshown ir
light grey) would be generated since the "Experithstage was entered twice.

2.2 Labeling Behaviors within the Learning Environment

The first step towards building detectors of thesestructs, in both this paper and our
previous work, was to employ “text replay taggira”log files [6]. In this process,
low-level student actions within microworld acties are extracted from the database.
Next, contiguous sequences of these actions segthémtoclips (see Figure 1). A
clip contains all actions associated with formulgthypotheses (hypothesize phase
actions) and designing and running experimentsg@xgent phase actions). We note
that several clips could be generated for a singlroworld activity since students
could navigate through the inquiry phases manygjrae shown in Figure 1. Clips are
also the grain-size at which data collection betwaig labeled, and detectors are built.

Once clips are generated, a human coder appliesromdre behavior tags to text
replays, “pretty-prints” of clips. In this domaig, clip may be tagged as involving
designing controlled experiments, testing statedotiyeses, both, or neither. Text
replay tagging provides “ground truth labels” frevhich detectors of the two inquiry
behaviors can be built. Next, we describe the étdagenerated via text replay tag-
ging student clips from which detectors will be stvacted and tested.

2.3 Data Sets

Clips were generated from 148 suburban Central Mdmssetts middle school stu-
dents’ interactions within a sequence of four miawdd activities. These clips were
tagged to create the following training, validatenmd test data sets:

e Training Set (601 clips). Initially, two human coders tagged 571 clips fiairiing
and cross-validating the detectors in [6]. Sinoeesa clips could be generated per
activity, a single, randomly chosen clip was tagged student, per activity. This
ensured all students and activities were equapyesented in this data set. Inter-



rater reliability for the tags was high overal(69 for designing controlled exper-
iments,k=1.0 for testing stated hypotheses). By chance, théifgtedion yielded
few first clips, clips representing students’ fickita collection within an activity.
To have a more representative training set, artiaddl 30 randomly selected first
clips were tagged. In total, 31.4% of the clips evixgged as designing controlled
experiments, and 35.6% as testing stated hypotheses

« Validation Set (100 clips). A special set of clips was tagged by one humareicod
for engineering detectors with improved construaidity (described in more de-
tail later). This set contained 20 randomly choBest clips, 20 randomly chosen
second clips, up through fifth clips. Clips werd stratified by student or activity.
More stringent student or activity-level stratifiicen was not used, because all stu-
dents and activities were used to build the trgirdat. Stratification would not re-
move biases already present in this data settéh ®4.0% were tagged as design-
ing controlled experiments, and 42.0% as testiagedthypotheses.

e Held-out Test Set (439 clips). A human coder tagged all remaining first through
fourth clips in the data set for comparing detextdrhis set did not contain fifth
clips because only 2 remained in the tagged coffiust clips in which one or no
simulation runs occurred were also excluded, bexdasonstration of the inquiry
behaviors requires that students run the simulaioleast twice [10]. Such clips
would trivially be identified as not demonstratingher behavior and could bias
our comparisons. This set had 64.7% tagged asrdegigontrolled experiments
and 61.0% as testing stated hypotheses. Notehbadldta distribution of the be-
haviors was different in the held-out test set tthenother data sets. This occurred
due to random chance, but provides an opportuaigohduct stringent validation,
since the base rates will be different in this datiathan the other data sets.

Feature sets computed over clips, combined withreplay tags, form the basis for

training and testing the detectors. Since the dirthis work is to compare models

built from different feature sets, we discuss thatdire generation and selection pro-
cesses in more detail in the following section.

3 Feature Selection and Detector Construction

Our original designing controlled experiments a@stihg stated hypotheses behavior
detectors considered 73 features associated vdlip §]. Feature categories includ-
ed: variables changed when making hypotheses,hfiibtheses made, simulation
pauses, total simulation runs, incomplete simutatins (paused and reset before the
simulation finished), complete simulation runs, ad&ble displays, hypothesis list
displays, variable changes made when designingriexgets, and total actions (any
action performed by a student). For each categmynts and timing values (min,
max, standard deviation, mean and mode) were cadplh addition, the specific
activity number associated with the clip was alsduded. A pairwise repeat trial
count, the number of all pairs of trials with therse independent variable values [9],
was also included, as was a unique pairwise cdetradfial count, the number of non-
repeated trials in which only one independent \weiaiffered between them (cf. [7]).



All features were computed cumulatively, takingoiatccount actions in predecessor
clips, as in [6]. For example, given the actionsvah in Figure 1, the total number of
runs for clip 2 would be 5 (assuming no more ruad bccurred after action 40).

We added five additional features to this set wisiebmed to have face validity as
potential predictors of the two behaviors, givingptal of 78 features. In specific, we
addedadjacent counts for unique controlled trials and repeatsesehare counts of
successive trials (e.g. trial 2 vs. 3, 3 vs. 4inich only one variable was changed
(controlled) or all variables were the same (repaatSince the controlled trials
counts excluded repeat trials, we added two adwitioounts for controlled trials that
did allow them, one pairwise and one adjacent. [jinave added a feature to count
when simulation variables explicitly stated in hipgses were changed.

Two different approaches for feature selection dhiey set were employed to form
behavior detectors. The first approach removedetated features prior to building
detectors (RCF detectors). The second approachvetselecting features geared at
improving construct validity (ICV detectors). Thga®cedures are discussed below.

3.1 Removed Correlated Features (RCF) Detector Constrdion

The original models in [6] were built in RapidMindr6 as follows. First, redundant
features correlated to other features at or abdvevere removed. Then, J48 decision
trees, a Java-based implementation of C4.5 dectsé@s with automated pruning to
control for over-fitting [11], were constructed. 8/RCF detectors of each behavior
developed in this paper were built using this sgraess. However, they instead
were built from the new feature set (78 featurasy] the enhanced training corpus.

The initial remove correlated features proceduimiahted 53 features. Of the 25
remaining features, 19 were timing values assatiafiéh the following feature clas-
ses: all actions, total simulation runs, incompktaulation runs, simulation pauses,
data table displays, hypothesis table displaysiabbes changed when making hy-
potheses, full hypotheses made, and simulatiorabtrichanges. The remaining 6
features were activity number and counts for thieong feature classes: all actions,
incomplete simulation runs, data table displaypadilyesis list displays, full hypothe-
ses created, and adjacent repeat trials count ¢brlee new features added). RCF
detectors for designing controlled experiments #asling stated hypotheses were
then built based on this set of 25 features. Tpeiformance will be discussed later in
the Results section.

We note that this procedure eliminated some featwtdgch are considered theoret-
ically important to both constructs. For exampleumts for controlled trials, total
simulation runs, and simulation variables statedhypotheses changed were all fil-
tered. These features are important, because dfiegtrtheoretical prescriptive mod-
els of how data should be collected to supportefute hypotheses. Constructing
controlled trials is seen as a key procedural carapbin theory on designing con-
trolled experiments (cf. [7]). Similarly, runningals and changing values of the vari-
ables explicitly stated in the hypotheses both ptdgs in determining if hypotheses
are supported. In addition, some features remaididgnot immediately appear to
map to theory on these constructs, such as the euafltimes that the student dis-



played the hypothesis viewer or data table. Asutised previously, we hypothesize
these RCF detectors will not perform as well agdets, because the remaining fea-
tures do not theoretically align as well with thehbviors. Next, we describe how we
selected features to yield detectors with improwedstruct validity (ICV detectors),
which may in turn improve predictive performance.

3.2 Improved Construct Validity (ICV) Detector Construction

We selected features for the new detectors witheased construct validity (ICV)
using a combination of theory and search. We §iegstght to understand how individ-
ual features related to the constructs. This wae dxy identifying which features had
linear correlations to each behavior at or above Several features did so with both
behaviors: all actions count, total run count, ctetgrun count, variable changes
made when designing experiments, changes to vasiamdsociated with stated hy-
potheses when designing experiments, adjacent aindige controlled experiments
counts (both with and without considering repeasy] pairwise and adjacent repeat
trials counts. An additional feature correlatedhwdiesigning controlled experiments,
the number of simulation pauses. From this setlofehtures, the counts for con-
trolled trials, repeat trials, and changing vamsbhassociated with stated hypotheses
are all features used by others to directly meaptomeedural understanding associat-
ed with the behaviors [7], [8]. The other featurggugh not directly related, may
also help distinguish procedural understanding.sTue kept all 11 features for the
next round of feature selection.

From here, we reduced the feature set further bjopeing separate manual
backwards elimination search (cf. [1]) for each stauct as follows. Features were
first ordered in terms of the theoretical support them by a domain expert. Then,
features were removed one at a time, starting thithone with the least theoretical
support. From this candidate feature set, a detisee was constructed using the
training set. The resulting model’s predictive penfiance was then tested on the
validation set of 100 clips. If the candidate model yielded hegterformance than its
predecessor, it was kept. If it did not, the caathdwas rejected and another feature
with low theoretical support was removed to formeav candidate set. This process
was repeated, removing one feature at a time, ptformance no longer improved.

Predictive performance was measured using A' [1®#] Happa K). Briefly, A’
[12], the area under the ROC curve, is the prolighiiat when given two clips, one
labeled as demonstrating a behavior and one ndgtector will correctly identify
which clip is which. An A' of 0.5 indicates chanlesrel performance, 1.0 indicates
perfect performance. Cohen’s Kappa éssesses if the detector is better than chance
at labeling behaviok of 0.0 indicates chance-level performance, 1.0cigis perfect
performance. When comparing two candidate modeés,ntodel with highek was
preferred. However, if A' decreased greatly a&niticreased slightly, the model with
higher A" was chosen. If two models yielded the samlues, the model with fewer
features was chosen.

The best ICV detectors of each construct performell over the validation set.
The best designing controlled experiments ICV detebad 8 features (total run



count and pause count were removed) and had Aaldk=.84. The best testing
stated hypotheses ICV detector had 5 featuresablarchanges made when designing
experiments (both related and unrelated to staygadtheses), unique pairwise con-
trolled trials, adjacent controlled trials with egis considered, and complete simula-
tion runs. Its performance on the validation ses$ a0 strong (A'=.9&=.77).

4 Results: Comparing Predictive Capabilities of Deteiors

Having created these two sets of detectors (RCH@wY we now can study whether
selecting features more theoretically aligned \lightwo inquiry behaviors will yield
better detectors than more traditional approaciiesre are two key questions we
address. First, which detectors predict best ofedcond, how quickly can detec-
tors identify the two inquiry behaviors? Performaneill be compared against the
held-out test set only, rather than using cross-validation overdatasets. This was
done for two reasons. First, the entire trainingveas used to select features for the
ICV detectors. Using the full training set enablesdto understand the relationships
between individual features and behaviors moreotngily. Second, the search pro-
cedure for building ICV detectors likely overfitdim to the validation set data.

4.1 Comparing Detectors’ Overall Performance

We compared detectors’ performance at classifyelgpliors in the held-out test set,
labeled at the clip level. As a reminder, this cangbn measures how well the detec-
tors can be used for assessing performance, ofifideg which students need scaf-
folding when they claim to be finished collectingta. Detectors are compared using
A' and KappaK). These were chosen because they both try to awsape for suc-
cessful classification by chance [13], and havéediht tradeoffs. A' can be more
sensitive to uncertainty, but looks at the classsi degree of confidenceslooks
only at the final label, leading to more stringewaluation. We note that statistical
tests comparing models’ A amdare not performed. This is because students bentri
ute multiple clips in the test set, and thus indelemce assumptions are violated.
Meta-analytical techniques do exist to handle ¢gig. [14]), but our data did not have
enough data points per student to employ them.

As shown in Table 1, the detectors with improvedstauct validity (ICV) detec-
tors outperformed the removed correlated featurRESH) detectors within the held-
out test set. For designing controlled experimebtth the RCF (A'=.89) and ICV
(A'=.94) detectors were excellent at distinguishihig construct. However, the ICV
detector was better at identifying the correct£I@RCFk=.30 vs. ICVk=.45). Both
detectors seem to bias towards labeling behaviénatsdesigning controlled experi-
ments”, as indicated by lower recall rates thartigien rates (RCF recall=.46, preci-
sion=.90 vs. ICV recall= .58, precision=.95). Thigggests that more students would
receive scaffolding than necessary upon finishiatg a@ollection.

Upon inspecting the results for designing contbkxperiments more closely, we
noticed a large number of first clips with exadilyo simulation runs had been mis-



Table 1.Confusion matrices and performance metrics foeatets’ overall predictions.

Designing Controlled Experiments Testing Stated Hypotheses
RCF Detector ICV Detector RCF Detector ICV Detector
TrueN TrueY TrueN TrueY TrueN TrueY TrueN TrueY
PredN 140 153 146 118 PredN 142 149 146 37
Pred Y 15 131 9 166 PredY 29 119 25 231
Pc=90,Rc=46 Pc=.095Rc=.38 Pc=80,Rc=44 Pc=90,Rc=.86
A'=89 K=30 A'=04 K= 45 A'=82K=24 A'=91K=.70

* Pc = precision; Rc =recall

classified. These kinds of clips comprised 26.7%hef held-out test corpus. When
filtering these out (leaving 322 clips), the perfance of the ICV detector was sub-
stantially higher (ICV A'=.94k =.75, recall=.83). The RCF detector’'s performance
was also higher (RCF A'=.9@, =.44, recall=.56), but did not reach the leveltud
ICV detector. The implications of this will be digsed later.

For the testing stated hypotheses behavior, the d€éctor again showed a sub-
stantial improvement over the RCF detector. The &ector was around ten per-
centage points better at distinguishing betweentlreclasses (RCF A'=.82 vs. ICV
A'=.91). Furthermorek and recall were much higher for the ICV detectant the
RCF detector (RCk =.24, recall=.44 vs. IC\« =.70, recall=.86). The ICV detector
is therefore quite good at selecting the correas<or a clip, and has much less bias
towards labeling behavior as “not testing stategoiyeses”.

Though not shown in Table 1, the ICV and RCF detscivere also compared to
our original detectors [6], which used the origii8l features and had correlated fea-
tures removed. Performance on the held-out tesvastslightly worse than the RCF
detector described here for designing controllegeexnents (A'=.86k=.28, re-
call=.42), but slightly better for testing stategbbtheses (A'=.8%=.30, recall=.49).
The new ICV detectors still outperform these detecby a substantial amount. In
sum, these findings support the idea that improwingstruct validity can lead to
better overall prediction of systematic inquiry.¥ewe determine if the ICV detec-
tors can infer behavior with fewer actions.

4.2  Comparing Detectors’ Performance Predicting with Less Data

The analyses here determine if detectors can predi@mvior labeled at the clip level
using less information. Again, these comparisorabknus to determine which detec-
tors are more suitable for identifying which studeneed suppors they conduct
their data collection. Given our learning environment and approach etlaee several
ways to define “less information”. We chose to lagksimulation runs because they
are the grain size at which we aim to activatefetdihg. In considering simulation
runs, we also had to consider the clip number. IRéw several cycles of data col-
lection could occur in an activity (each cycle eg@nts a clip). Predictive perfor-
mance could be impacted by the clip number undesideration, because later clips
contain all actions associated with predecessps.clihus, we compare each detector



on predicting behavior labeled at the clip levéhgsactions up to the™ run within
them" clip, for varying numbers of runs and clips.

This approach required new sets of feature valoemctommodate the fewer ac-
tions. Feature values were computed using all astfoom clips 1m-1 (m > 1), and
all actions in themth clip, up to and including theth “sim start run” action (actions
in dark grey in Figure 1). As an example, the feattalues for the action sequence in
Figure 1 for clip 2 and two runs would be computisthg all actions 1-16 from the
first clip, and actions up to and including thea®t “sim start run” (actions 31-38) in
clip 2. Note that the notion of a “full run” actlakpans several actions (e.g. actions
11-13 in Figure 1), given that the student coutdthe simulation run to completion,
pause the simulation, or reset it. The “sim start’raction was chosen (rather than
“sim finish” or “sim reset”) to denote the boundatye to considerations for how we
would scaffold students. In particular, we may wanprevent students from collect-
ing of data unhelpful for the subsequent stagenqtiiry, where they analyze data.
Having the detectors classify behavior at the paimere students try to run the simu-
lation enables such an intervention.

We compare detectors’ performance using less datmimparing predictions for a
given clip-run combination against the ground tratiels at the clip level. The num-
ber of clips was varied from 1 to 4, and the numdfeuns was varied from 1 to 5. A’
andk were computed per combination. Our expectatiohas &s the number of runs
considered increases (and correspondingly the nuofb&ctions considered increas-
es), A" andk will increase. However, since many clips had fethan five simulation
runs, performance metrics may plateau as the numwbeuns increases. This may
occur because no additional information would bailatle to improve predictions.

As shown in Table 2, the ICV detectors match omperform the RCF detectors,
when both detector variants are given less datatedent performance. For clip 1,
neither detector performed well for one or two r@kiS0.0). This finding associated
with one run matched expectations because poditiyeiry behavior can only be
identified after two or more runs (cf. [7]). Fomsu3-5 on the first clip, the RCF de-
tector had A' ranging from .73 to .76, whereasl@¥¢ detector had A' ranging from
.93 to 1.0. The RCF detectorsremained at chance levels ranging from .06 to .07.
The ICV detectorsk values were better but still low, ranging from t©620.

The designing controlled experiments detectors’rpgoerformance on first clips
may be due to misclassifications of such clips witactly two runs (see Section 4.1).
To see if ignoring such clips would impact detestability to classify with less data,
we removed them from the test set and re-computedgerformance metrics. With
only first clips with at least three runs, bothealdbrs’ performance using fewer ac-
tions, up to the first and second run, remaineg i@x. However, when using actions
up to runs 3-5, the ICV detector (run 3: A'=.98,.42; run 4: A'=1.0k=.65; run 5:
A'=.91, k=.47) outperformed the RCF detector (A'=.70-.K9,06-.11 for the same
values). Additionally, three runs was the leveludiich the ICV detector could per-
form as well as classifying when considering atiats in the first clip (ICV all ac-
tions A'=.89,k=.50).

For later clips within an activity, both detectamach predictive performance
equivalent to considering all actions (the “all’lmmns Table 2) after a single run.



Table 2. Designing controlled experiments performance owvems andn-clips

Designing Controlled Experiments

RCF Detector ICV Detector
Runs 1 2 3 - 5 All Runs 1 2 3 4 5 All
= 1.79(00) .69(01) .75(.06) .76 (.07) .73(.06) .71(.05) = 1 1.0(00) 1.0(.04) 1.0(.16) 1.0(20) .93(.16) .93(16)
zZ29 (39) 95(.59) 94(.59) .95(61) .95(61) .95(61) Z 298 (:66) 97(.82) 97(.85) .97(85) .97(85) .97(8%
.;:_ 3 .84(22) .89(.33) .89(.33) .89(33) .89(.33) .89(33) .% 3 95(.51) 93(.59) .94(.66) .94(.66) .94 (.66) .94 (.66)
T4 .89 (.57) .84(46) .84(46) .84 (.46) .84(46) .84 (46) T 410 (.90) .99(.79) .99(.69) .99(.69) .99(.69) .99 (.69)

* Each entry is in the format A" (K)

Table 3. Testing stated hypotheses performance pveins andn-clips

Testing Stated Hypotheses
RCF Detector ICV Detector
Runs 1 2 3 4 5 All Runs 1 2 3 4 5 Al
1 .70 (.01) .66(.06) .63(.02) .63(.01) .66(.04) .65(.04) 1 1.0(.00) .84(.37) .86(49) .91(54) .89(.53) .89(.52)

2 91(40) 92(44) 90(39) 90(39) .90(39) .90(39) 2 93(68) 95(75) 93(73) 93(73) 95(75) 95(75)
3 88(50) 87(47) 87(47) 87(47) 87(47) 87(47) 3 93(86) 89(79) 87(76) 88(76) .89(79) .89(79)
4 89(47) 91(57) 91(57) 91(57) 91(57) 91(57) 4 .90(90) 90(79) .90(79) .90(79) .90(79) .90(.79)

* Each entry is in the format A’ (K)

Clip Num
Clip Num

However, the ICV detectors outperform the RCF detsc For example, when look-
ing at clip 2 / run 2, the ICV detector performdtee (A'=.97,k=.82) than the RCF
detector (A'=.95k=.59). Thus, once students have begun their sedatadcollection
cycle within an activity, the ICV detectors cantbetjudge who needs scaffolding
after the first run.

For testing stated hypotheses, the ICV detectonagatched or outperformed the
RCF detectors as shown in Table 3. For first clthe, RCF detector had A' values
ranging from .63 to .70, anklvalues at chance levels. However, the ICV detector
performed well at this skill for first clips (ICMlaactions A'=.89k=.52), a difference
from designing controlled experiments. In factcduld properly identify behavior
after just the second run (ICV clip 1, run 2 had.84,k=.37). By the third run, pre-
dictive performance was on par with a detector ttmtld consider all actions. For
later clips, the ICV detector outperformed the Rigfector at all run levels. For ex-
ample, when predicting using actions up to the sécan for clip 2, the RCF detector
had A'=.92 an&k=.44. Though this performance is good, the ICV deteperformed
much better with A'=.95 and=.75. Thus overall, the ICV detectors can be used t
classify testing hypotheses behavior as early@sélond run in the first clip, and are
better at classification in later clips than theFRd&tectors are.

5 Discussion and Conclusions

We investigated whether selecting features basedoastruct validity improves the
predictive capabilities of machine-learned behawetectors of scientific inquiry
behaviors, designing controlled experiments antngstated hypotheses, within a
science microworld [10]. To explore this, we comgghtwo types of detectors. One



type removed used an automated approach, remoniagdorrelated features (RCF
detectors). Another used a partially manual apgrdacselect features theoretically
aligned with the behaviors, thereby increasing tows validity (ICV detectors).
Models’ predictive performance was compared agairietld-out test set in two ways.
We predicted behavior at the level of a full datdlection cycle, the grain size at
which behavior was labeled. We also predicted hiehsat a finer grain size, mi-
croworld simulation runs, a grain size containiegd information.

The results showed that improving construct validian yield models with better
overall predictive performance, even with less date ICV detector for testing stat-
ed hypotheses reached much higher performancesi¢veh the RCF detector. The
current ICV detector can effectively be used tgder scaffolding when students
finish data collection, given its high A'=.91 akd.70 values. It also can be used after
as few as two runs on students’ first data colbecto provide fail-soft interventions
that are not costly if misapplied. This is evideshd®y A' values at or above .84, and
K at or above .37 found when increasing the numbesirofilation runs (thereby in-
creasing the number of actions available) to makdiptions.

The ICV detector for designing controlled experitsealso outperformed its RCF
counterpart. However, both the ICV and RCF detscpamrformed poorly when they
inferred behavior for students’ first data collectiwithin an activity. We discovered
this was due, in part, to poor classification odtficycles containing exactly two simu-
lation runs. When ignoring such cycles, the ICVed&dr's performance improved
substantially while the RCF detector remained pttorould be applied in as few as
three runs on students’ first data collection. Viéédve the ICV detector failed on this
case because the training set did not contain dncagges of this kind (see Section 2.3
for more details). This issue may be alleviatecallging more of these training clips
and re-engineering the ICV detector following otmgedure.

This paper offers two contributions towards levanggfeature-based machine-
learned detectors to assess behavior. First, Wwerexpthe importance of considering
construct validity when selecting features. We fbtimat selecting features taking this
into account yielded better detectors than selgdiatures using a more atheoretical
approach, by removing inter-correlated featuresoBé, we described a general pro-
cess for validating detectors at finer grain-sittem they were trained and built. For
our domain, the finer grain-size was the levelngfividual simulation runs. We found
that detectors with improved construct validity ltbaorrectly infer behavior at the
finer grain-size. This means we can reuse the I€Mctors as is to trigger scaffolding
sooner, without needing to re-tag and retrain detedo work at this level. In gen-
eral, grain size and use of the detectors, whdtrescaffolding (run or clip level in
our domain) or for overall assessment (clip lemedir domain), are both important to
consider when evaluating detectors’ applicabilityilearning environment.

There are some limitations to this work. Thoughaeetrolled for the data mining
algorithm and algorithm parameters, we did not camaphe ICV detectors to others
built using more sophisticated, automated featatection approaches (e.g. [4], [5]).
In addition, we only used a single data mining &t to generate detectors, J48
decision trees. Different data mining algorithmsynhave yielded different results.
Our results are also contingent on the initialfeatures engineered, since there is no



guarantee we computed all possible relevant feafiareour domain. Finally, we did
not consider the notion of broader generalizabiktyr example, could a detector built
for one science domain also detect inquiry skilbther domains? Considering these
additional issues will provide more insight intetiole construct validity plays in the
development and successful use of machine-leareiettdrs.
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