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Abstract. Data-mined models often achieve good predictive power, but some-
times at the cost of interpretability. We investigate here if selecting features to 
increase a model’s construct validity and interpretability also can improve the 
model’s ability to predict the desired constructs. We do this by taking existing 
models and reducing the feature set to increase construct validity. We then 
compare the existing and new models on their predictive capabilities within a 
held-out test set in two ways. First, we analyze the models’ overall predictive 
performance. Second, we determine how much student interaction data is nec-
essary to make accurate predictions. We find that these reduced models with 
higher construct validity not only achieve better agreement overall, but also 
achieve better prediction with less data. This work is conducted in the context 
of developing models to assess students’ inquiry skill at designing controlled 
experiments and testing stated hypotheses within a science inquiry microworld. 

Keywords: science microworlds, science inquiry, inquiry assessment, behavior 
detector, educational data mining, construct validity, feature selection, J48 

1 Introduction 

Feature selection, the process of pre-selecting features before running a data mining 
algorithm, can improve the performance of data mining algorithms (cf. [1]). Several 
automated approaches exist for finding optimal feature sets such as filtering redundant 
features [2], conducting heuristic searches (cf. [3]), using genetic algorithms [4], and 
clustering [5]. These procedures, though powerful, may yield sets that domain experts 
would not intuitively expect to align with the target class (construct). An alternative is 
to select features that specifically improve models’ construct validity. 

This alternative is motivated by our prior work in developing automated detectors 
of two scientific inquiry behaviors, designing controlled experiments and testing stat-
ed hypotheses, within a science microworld [6]. To build them, we first filtered fea-
tures that correlated highly with each other, and then constructed J48 decision trees. 
The resulting detectors worked well under student-level cross-validation. However, 
upon inspecting them more closely, we noticed some features considered theoretically 
important to the constructs [7], [8], [9] were eliminated at the filtering step. Also, 
other features without theoretical justification remained. We believe this feature selec-



 
 

tion process may have yielded a feature set that did not represent all aspects of the 
behaviors, which in turn may have negatively impacted their predictive performance.  

Thus, we explore in this paper whether selecting features with the goal of increas-
ing a model’s construct validity and interpretability can also improve a model’s pre-
dictive ability. We do so by comparing two types of detectors for each behavior. One 
type is built with an automated feature selection strategy used in our original detectors 
[6]. The other type is built using a combination of manual selection and statistics to 
select successful features that theoretically align more closely with the behaviors.  

We compare the predictive performance of the two types of detectors against a 
held-out test set in two ways. First, we compare the detectors’ ability to predict be-
havior at the level of a full data collection cycle. This enables us to measure how well 
the detectors can be used for assessing performance, or for identifying which students 
need scaffolding when they claim to finish collecting data. In addition, it is useful to 
have detectors that can identify a student’s lack of skill as quickly as possible so the 
software can “jump in” and support the student as soon as they need it to prevent 
frustration, floundering, or haphazard inquiry [10]. Thus, the second way we compare 
detectors is to determine how much student data is needed before inquiry behavior 
can be accurately predicted. The faster detectors can make valid inferences, the faster 
the system can help the students who need it.  

2 Background and Datasets 

2.1 Learning Environment and Behaviors of Interest 

The Science Assistments Phase Change Microworld [6], [10], designed for use in 
middle school science classes, aims to foster understanding about melting and boiling 
processes of a substance via semi-structured scientific inquiry. A typical activity re-
quires students to determine if one of four variables (like amount of substance) affects 
properties of a substance’s phase change (like its melting point). Students address this 
goal by conducting inquiry in four phases: observe, hypothesize, experiment, and 
analyze data. Each one exercises different inquiry skills. The behaviors of interest for 
the analyses presented here, designing controlled experiments and testing stated hy-
potheses behaviors, occur in the experiment phase.  

In the experiment phase, students collect data (trials) by designing and running ex-
periments with a phase change simulation. Students can change the simulation’s vari-
able values, run, pause and reset the simulation, and view previously collected trials 
and stated hypotheses. Briefly, when collecting data, students design controlled exper-
iments when they generate data that support determining the effects of independent 
variables on outcomes. They test stated hypotheses when they generate data with the 
intent to support or refute an explicitly stated hypothesis. More information about the 
microworld and constructs can be found in [6]. 



  

 

2.2 Labeling Behaviors within the Learning Environment 

The first step towards building detectors of these constructs, in both this paper and our 
previous work, was to employ “text replay tagging” of log files [6]. In this process, 
low-level student actions within microworld activities are extracted from the database. 
Next, contiguous sequences of these actions segmented into clips (see Figure 1). A 
clip contains all actions associated with formulating hypotheses (hypothesize phase 
actions) and designing and running experiments (experiment phase actions). We note 
that several clips could be generated for a single microworld activity since students 
could navigate through the inquiry phases many times, as shown in Figure 1. Clips are 
also the grain-size at which data collection behavior is labeled, and detectors are built. 

Once clips are generated, a human coder applies one or more behavior tags to text 
replays, “pretty-prints” of clips. In this domain, a clip may be tagged as involving 
designing controlled experiments, testing stated hypotheses, both, or neither. Text 
replay tagging provides “ground truth labels” from which detectors of the two inquiry 
behaviors can be built. Next, we describe the datasets generated via text replay tag-
ging student clips from which detectors will be constructed and tested. 

2.3 Data Sets  

Clips were generated from 148 suburban Central Massachusetts middle school stu-
dents’ interactions within a sequence of four microworld activities. These clips were 
tagged to create the following training, validation and test data sets: 

• Training Set (601 clips). Initially, two human coders tagged 571 clips for training 
and cross-validating the detectors in [6]. Since several clips could be generated per 
activity, a single, randomly chosen clip was tagged per student, per activity. This 
ensured all students and activities were equally represented in this data set. Inter-

 

Fig. 1. Example sequence of student actions for a phase change activity. Two clips (shown in 
light grey) would be generated since the "Experiment" stage was entered twice. 



 
 

rater reliability for the tags was high overall (κ=.69 for designing controlled exper-
iments, κ=1.0 for testing stated hypotheses). By chance, the stratification yielded 
few first clips, clips representing students’ first data collection within an activity. 
To have a more representative training set, an additional 30 randomly selected first 
clips were tagged. In total, 31.4% of the clips were tagged as designing controlled 
experiments, and 35.6% as testing stated hypotheses. 

• Validation Set (100 clips). A special set of clips was tagged by one human coder 
for engineering detectors with improved construct validity (described in more de-
tail later). This set contained 20 randomly chosen first clips, 20 randomly chosen 
second clips, up through fifth clips. Clips were not stratified by student or activity. 
More stringent student or activity-level stratification was not used, because all stu-
dents and activities were used to build the training set. Stratification would not re-
move biases already present in this data set. In total, 34.0% were tagged as design-
ing controlled experiments, and 42.0% as testing stated hypotheses. 

• Held-out Test Set (439 clips). A human coder tagged all remaining first through 
fourth clips in the data set for comparing detectors. This set did not contain fifth 
clips because only 2 remained in the tagged corpus. First clips in which one or no 
simulation runs occurred were also excluded, because demonstration of the inquiry 
behaviors requires that students run the simulation at least twice [10]. Such clips 
would trivially be identified as not demonstrating either behavior and could bias 
our comparisons. This set had 64.7% tagged as designing controlled experiments 
and 61.0% as testing stated hypotheses. Note that the data distribution of the be-
haviors was different in the held-out test set than the other data sets. This occurred 
due to random chance, but provides an opportunity to conduct stringent validation, 
since the base rates will be different in this data set than the other data sets. 

Feature sets computed over clips, combined with text replay tags, form the basis for 
training and testing the detectors. Since the aim of this work is to compare models 
built from different feature sets, we discuss the feature generation and selection pro-
cesses in more detail in the following section. 

3 Feature Selection and Detector Construction 

Our original designing controlled experiments and testing stated hypotheses behavior 
detectors considered 73 features associated with a clip [6]. Feature categories includ-
ed: variables changed when making hypotheses, full hypotheses made, simulation 
pauses, total simulation runs, incomplete simulation runs (paused and reset before the 
simulation finished), complete simulation runs, data table displays, hypothesis list 
displays, variable changes made when designing experiments, and total actions (any 
action performed by a student). For each category, counts and timing values (min, 
max, standard deviation, mean and mode) were computed. In addition, the specific 
activity number associated with the clip was also included. A pairwise repeat trial 
count, the number of all pairs of trials with the same independent variable values [9], 
was also included, as was a unique pairwise controlled trial count, the number of non-
repeated trials in which only one independent variable differed between them (cf. [7]). 



  

 

All features were computed cumulatively, taking into account actions in predecessor 
clips, as in [6]. For example, given the actions shown in Figure 1, the total number of 
runs for clip 2 would be 5 (assuming no more runs had occurred after action 40). 

We added five additional features to this set which seemed to have face validity as 
potential predictors of the two behaviors, giving a total of 78 features. In specific, we 
added adjacent counts for unique controlled trials and repeats. These are counts of 
successive trials (e.g. trial 2 vs. 3, 3 vs. 4) in which only one variable was changed 
(controlled) or all variables were the same (repeated). Since the controlled trials 
counts excluded repeat trials, we added two additional counts for controlled trials that 
did allow them, one pairwise and one adjacent. Finally, we added a feature to count 
when simulation variables explicitly stated in hypotheses were changed. 

Two different approaches for feature selection over this set were employed to form 
behavior detectors. The first approach removed correlated features prior to building 
detectors (RCF detectors). The second approach involved selecting features geared at 
improving construct validity (ICV detectors). These procedures are discussed below.  

3.1 Removed Correlated Features (RCF) Detector Construction 

The original models in [6] were built in RapidMiner 4.6 as follows. First, redundant 
features correlated to other features at or above 0.6 were removed. Then, J48 decision 
trees, a Java-based implementation of C4.5 decision trees with automated pruning to 
control for over-fitting [11], were constructed. The RCF detectors of each behavior 
developed in this paper were built using this same process. However, they instead 
were built from the new feature set (78 features), and the enhanced training corpus. 

The initial remove correlated features procedure eliminated 53 features. Of the 25 
remaining features, 19 were timing values associated with the following feature clas-
ses: all actions, total simulation runs, incomplete simulation runs, simulation pauses, 
data table displays, hypothesis table displays, variables changed when making hy-
potheses, full hypotheses made, and simulation variable changes. The remaining 6 
features were activity number and counts for the following feature classes: all actions, 
incomplete simulation runs, data table displays, hypothesis list displays, full hypothe-
ses created, and adjacent repeat trials count (one of the new features added). RCF 
detectors for designing controlled experiments and testing stated hypotheses were 
then built based on this set of 25 features. Their performance will be discussed later in 
the Results section. 

We note that this procedure eliminated some features which are considered theoret-
ically important to both constructs. For example, counts for controlled trials, total 
simulation runs, and simulation variables stated in hypotheses changed were all fil-
tered. These features are important, because they reflect theoretical prescriptive mod-
els of how data should be collected to support or refute hypotheses. Constructing 
controlled trials is seen as a key procedural component in theory on designing con-
trolled experiments (cf. [7]). Similarly, running trials and changing values of the vari-
ables explicitly stated in the hypotheses both play roles in determining if hypotheses 
are supported. In addition, some features remaining did not immediately appear to 
map to theory on these constructs, such as the number of times that the student dis-



 
 

played the hypothesis viewer or data table. As discussed previously, we hypothesize 
these RCF detectors will not perform as well as detectors, because the remaining fea-
tures do not theoretically align as well with the behaviors. Next, we describe how we 
selected features to yield detectors with improved construct validity (ICV detectors), 
which may in turn improve predictive performance. 

3.2 Improved Construct Validity (ICV) Detector Construc tion 

We selected features for the new detectors with increased construct validity (ICV) 
using a combination of theory and search. We first sought to understand how individ-
ual features related to the constructs. This was done by identifying which features had 
linear correlations to each behavior at or above 0.2. Several features did so with both 
behaviors: all actions count, total run count, complete run count, variable changes 
made when designing experiments, changes to variables associated with stated hy-
potheses when designing experiments, adjacent and pairwise controlled experiments 
counts (both with and without considering repeats), and pairwise and adjacent repeat 
trials counts. An additional feature correlated with designing controlled experiments, 
the number of simulation pauses. From this set of 11 features, the counts for con-
trolled trials, repeat trials, and changing variables associated with stated hypotheses 
are all features used by others to directly measure procedural understanding associat-
ed with the behaviors [7], [8]. The other features, though not directly related, may 
also help distinguish procedural understanding. Thus, we kept all 11 features for the 
next round of feature selection. 

From here, we reduced the feature set further by performing separate manual 
backwards elimination search (cf. [1]) for each construct as follows. Features were 
first ordered in terms of the theoretical support for them by a domain expert. Then, 
features were removed one at a time, starting with the one with the least theoretical 
support. From this candidate feature set, a decision tree was constructed using the 
training set. The resulting model’s predictive performance was then tested on the 
validation set of 100 clips. If the candidate model yielded better performance than its 
predecessor, it was kept. If it did not, the candidate was rejected and another feature 
with low theoretical support was removed to form a new candidate set. This process 
was repeated, removing one feature at a time, until performance no longer improved.  

Predictive performance was measured using A' [12] and Kappa (κ). Briefly, A' 
[12], the area under the ROC curve, is the probability that when given two clips, one 
labeled as demonstrating a behavior and one not, a detector will correctly identify 
which clip is which. An A' of 0.5 indicates chance-level performance, 1.0 indicates 
perfect performance. Cohen’s Kappa (κ) assesses if the detector is better than chance 
at labeling behavior. κ of 0.0 indicates chance-level performance, 1.0 indicates perfect 
performance. When comparing two candidate models, the model with higher κ was 
preferred. However, if A' decreased greatly and κ increased slightly, the model with 
higher A' was chosen. If two models yielded the same values, the model with fewer 
features was chosen. 

The best ICV detectors of each construct performed well over the validation set. 
The best designing controlled experiments ICV detector had 8 features (total run 



  

 

count and pause count were removed) and had A'=1.0 and κ=.84. The best testing 
stated hypotheses ICV detector had 5 features: variable changes made when designing 
experiments (both related and unrelated to stated hypotheses), unique pairwise con-
trolled trials, adjacent controlled trials with repeats considered, and complete simula-
tion runs. Its performance on the validation set was also strong (A'=.96, κ=.77). 

4 Results: Comparing Predictive Capabilities of Detectors 

Having created these two sets of detectors (RCF and ICV), we now can study whether 
selecting features more theoretically aligned with the two inquiry behaviors  will yield 
better detectors than more traditional approaches. There are two key questions we 
address. First, which detectors predict best overall? Second, how quickly can detec-
tors identify the two inquiry behaviors? Performance will be compared against the 
held-out test set only, rather than using cross-validation over all datasets. This was 
done for two reasons. First, the entire training set was used to select features for the 
ICV detectors. Using the full training set enabled us to understand the relationships 
between individual features and behaviors more thoroughly. Second, the search pro-
cedure for building ICV detectors likely overfit them to the validation set data. 

4.1 Comparing Detectors’ Overall Performance 

We compared detectors’ performance at classifying behaviors in the held-out test set, 
labeled at the clip level. As a reminder, this comparison measures how well the detec-
tors can be used for assessing performance, or identifying which students need scaf-
folding when they claim to be finished collecting data. Detectors are compared using 
A' and Kappa (κ). These were chosen because they both try to compensate for suc-
cessful classification by chance [13], and have different tradeoffs. A' can be more 
sensitive to uncertainty, but looks at the classifier’s degree of confidence; κ looks 
only at the final label, leading to more stringent evaluation. We note that statistical 
tests comparing models’ A and κ are not performed. This is because students contrib-
ute multiple clips in the test set, and thus independence assumptions are violated. 
Meta-analytical techniques do exist to handle this (e.g. [14]), but our data did not have 
enough data points per student to employ them. 

As shown in Table 1, the detectors with improved construct validity (ICV) detec-
tors outperformed the removed correlated features (RCF) detectors within the held-
out test set. For designing controlled experiments, both the RCF (A'=.89) and ICV 
(A'=.94) detectors were excellent at distinguishing this construct. However, the ICV 
detector was better at identifying the correct class (RCF κ=.30 vs. ICV κ=.45). Both 
detectors seem to bias towards labeling behavior as “not designing controlled experi-
ments”, as indicated by lower recall rates than precision rates (RCF recall=.46, preci-
sion=.90 vs. ICV recall= .58, precision=.95). This suggests that more students would 
receive scaffolding than necessary upon finishing data collection.  

Upon inspecting the results for designing controlled experiments more closely, we 
noticed a large number of first clips with exactly two simulation runs had been mis-



 
 

classified. These kinds of clips comprised 26.7% of the held-out test corpus. When 
filtering these out (leaving 322 clips), the performance of the ICV detector was sub-
stantially higher (ICV A'=.94, κ =.75, recall=.83). The RCF detector’s performance 
was also higher (RCF A'=.90, κ =.44, recall=.56), but did not reach the level of the 
ICV detector. The implications of this will be discussed later. 

For the testing stated hypotheses behavior, the ICV detector again showed a sub-
stantial improvement over the RCF detector. The ICV detector was around ten per-
centage points better at distinguishing between the two classes (RCF A'=.82 vs. ICV 
A'=.91). Furthermore, κ and recall were much higher for the ICV detector than the 
RCF detector (RCF κ =.24, recall=.44 vs. ICV κ =.70, recall=.86). The ICV detector 
is therefore quite good at selecting the correct class for a clip, and has much less bias 
towards labeling behavior as “not testing stated hypotheses”. 

Though not shown in Table 1, the ICV and RCF detectors were also compared to 
our original detectors [6], which used the original 73 features and had correlated fea-
tures removed. Performance on the held-out test set was slightly worse than the RCF 
detector described here for designing controlled experiments (A'=.86, κ=.28, re-
call=.42), but slightly better for testing stated hypotheses (A'=.83, κ=.30, recall=.49). 
The new ICV detectors still outperform these detectors by a substantial amount. In 
sum, these findings support the idea that improving construct validity can lead to 
better overall prediction of systematic inquiry. Next, we determine if the ICV detec-
tors can infer behavior with fewer actions. 

4.2 Comparing Detectors’ Performance Predicting with Less Data 

The analyses here determine if detectors can predict behavior labeled at the clip level 
using less information. Again, these comparisons enable us to determine which detec-
tors are more suitable for identifying which students need support as they conduct 
their data collection. Given our learning environment and approach, there are several 
ways to define “less information”. We chose to look at simulation runs because they 
are the grain size at which we aim to activate scaffolding. In considering simulation 
runs, we also had to consider the clip number. Recall that several cycles of data col-
lection could occur in an activity (each cycle represents a clip). Predictive perfor-
mance could be impacted by the clip number under consideration, because later clips 
contain all actions associated with predecessor clips. Thus, we compare each detector 

Table 1. Confusion matrices and performance metrics for detectors’ overall predictions.  



  

 

on predicting behavior labeled at the clip level using actions up to the nth run within 
the mth clip, for varying numbers of runs and clips. 

This approach required new sets of feature values to accommodate the fewer ac-
tions. Feature values were computed using all actions from clips 1..m-1 (m > 1), and 
all actions in the mth clip, up to and including the nth “sim start run” action (actions 
in dark grey in Figure 1). As an example, the feature values for the action sequence in 
Figure 1 for clip 2 and two runs would be computed using all actions 1-16 from the 
first clip, and actions up to and including the second “sim start run” (actions 31-38) in 
clip 2. Note that the notion of a “full run” actually spans several actions (e.g. actions 
11-13 in Figure 1), given that the student could let the simulation run to completion, 
pause the simulation, or reset it. The “sim start run” action was chosen (rather than 
“sim finish” or “sim reset”) to denote the boundary due to considerations for how we 
would scaffold students. In particular, we may want to prevent students from collect-
ing of data unhelpful for the subsequent stage of inquiry, where they analyze data. 
Having the detectors classify behavior at the point where students try to run the simu-
lation enables such an intervention.  

We compare detectors’ performance using less data by comparing predictions for a 
given clip-run combination against the ground truth labels at the clip level. The num-
ber of clips was varied from 1 to 4, and the number of runs was varied from 1 to 5. A' 
and κ were computed per combination. Our expectation is that as the number of runs 
considered increases (and correspondingly the number of actions considered increas-
es), A' and κ will increase. However, since many clips had fewer than five simulation 
runs, performance metrics may plateau as the number of runs increases. This may 
occur because no additional information would be available to improve predictions. 

As shown in Table 2, the ICV detectors match or outperform the RCF detectors, 
when both detector variants are given less data on student performance. For clip 1, 
neither detector performed well for one or two runs (κ≅0.0). This finding associated 
with one run matched expectations because positive inquiry behavior can only be 
identified after two or more runs (cf. [7]). For runs 3-5 on the first clip, the RCF de-
tector had A' ranging from .73 to .76, whereas the ICV detector had A' ranging from 
.93 to 1.0. The RCF detectors’ κ remained at chance levels ranging from .06 to .07. 
The ICV detectors’ κ values were better but still low, ranging from .16 to .20. 

The designing controlled experiments detectors’ poor performance on first clips 
may be due to misclassifications of such clips with exactly two runs (see Section 4.1). 
To see if ignoring such clips would impact detectors’ ability to classify with less data, 
we removed them from the test set and re-computed our performance metrics. With 
only first clips with at least three runs, both detectors’ performance using fewer ac-
tions, up to the first and second run, remained very low. However, when using actions 
up to runs 3-5, the ICV detector (run 3: A'=.99, κ=.42; run 4: A'=1.0, κ=.65; run 5: 
A'=.91, κ=.47) outperformed the RCF detector (A'=.70-.79, κ=.06-.11 for the same 
values). Additionally, three runs was the level at which the ICV detector could per-
form as well as classifying when considering all actions in the first clip (ICV all ac-
tions A'=.89, κ=.50). 

For later clips within an activity, both detectors reach predictive performance 
equivalent to considering all actions (the “all” columns Table 2) after a single run. 



 
 

However, the ICV detectors outperform the RCF detectors. For example, when look-
ing at clip 2 / run 2, the ICV detector performs better (A'=.97, κ=.82) than the RCF 
detector (A'=.95, κ=.59). Thus, once students have begun their second data collection 
cycle within an activity, the ICV detectors can better judge who needs scaffolding 
after the first run. 

For testing stated hypotheses, the ICV detector again matched or outperformed the 
RCF detectors as shown in Table 3. For first clips, the RCF detector had A' values 
ranging from .63 to .70, and κ values at chance levels. However, the ICV detector 
performed well at this skill for first clips (ICV all actions A'=.89, κ=.52), a difference 
from designing controlled experiments. In fact, it could properly identify behavior 
after just the second run (ICV clip 1, run 2 had A'=.84, κ=.37). By the third run, pre-
dictive performance was on par with a detector that could consider all actions. For 
later clips, the ICV detector outperformed the RCF detector at all run levels. For ex-
ample, when predicting using actions up to the second run for clip 2, the RCF detector 
had A'=.92 and κ=.44. Though this performance is good, the ICV detector performed 
much better with A'=.95 and κ=.75. Thus overall, the ICV detectors can be used to 
classify testing hypotheses behavior as early as the second run in the first clip, and are 
better at classification in later clips than the RCF detectors are. 

5 Discussion and Conclusions 

We investigated whether selecting features based on construct validity improves the 
predictive capabilities of machine-learned behavior detectors of scientific inquiry 
behaviors, designing controlled experiments and testing stated hypotheses, within a 
science microworld [10]. To explore this, we compared two types of detectors. One 

Table 2. Designing controlled experiments performance over n-runs and m-clips 

 

Table 3. Testing stated hypotheses performance over n-runs and m-clips 

 



  

 

type removed used an automated approach, removing inter-correlated features (RCF 
detectors). Another used a partially manual approach to select features theoretically 
aligned with the behaviors, thereby increasing construct validity (ICV detectors). 
Models’ predictive performance was compared against a held-out test set in two ways. 
We predicted behavior at the level of a full data collection cycle, the grain size at 
which behavior was labeled. We also predicted behavior at a finer grain size, mi-
croworld simulation runs, a grain size containing less information. 

The results showed that improving construct validity can yield models with better 
overall predictive performance, even with less data. The ICV detector for testing stat-
ed hypotheses reached much higher performance levels than the RCF detector. The 
current ICV detector can effectively be used to trigger scaffolding when students 
finish data collection, given its high A'=.91 and κ=.70 values. It also can be used after 
as few as two runs on students’ first data collection to provide fail-soft interventions 
that are not costly if misapplied. This is evidenced by A' values at or above .84, and 
κ at or above .37 found when increasing the number of simulation runs (thereby in-
creasing the number of actions available) to make predictions.  

The ICV detector for designing controlled experiments also outperformed its RCF 
counterpart. However, both the ICV and RCF detectors performed poorly when they 
inferred behavior for students’ first data collection within an activity. We discovered 
this was due, in part, to poor classification of first cycles containing exactly two simu-
lation runs. When ignoring such cycles, the ICV detector’s performance improved 
substantially while the RCF detector remained poor. It could be applied in as few as 
three runs on students’ first data collection. We believe the ICV detector failed on this 
case because the training set did not contain enough cases of this kind (see Section 2.3 
for more details). This issue may be alleviated by adding more of these training clips 
and re-engineering the ICV detector following our procedure. 

This paper offers two contributions towards leveraging feature-based machine-
learned detectors to assess behavior. First, we explored the importance of considering 
construct validity when selecting features. We found that selecting features taking this 
into account yielded better detectors than selecting features using a more atheoretical 
approach, by removing inter-correlated features. Second, we described a general pro-
cess for validating detectors at finer grain-sizes than they were trained and built. For 
our domain, the finer grain-size was the level of individual simulation runs. We found 
that detectors with improved construct validity could correctly infer behavior at the 
finer grain-size. This means we can reuse the ICV detectors as is to trigger scaffolding 
sooner, without needing to re-tag and retrain detectors to work at this level. In gen-
eral, grain size and use of the detectors, whether for scaffolding (run or clip level in 
our domain) or for overall assessment (clip level in our domain), are both important to 
consider when evaluating detectors’ applicability in a learning environment. 

There are some limitations to this work. Though we controlled for the data mining 
algorithm and algorithm parameters, we did not compare the ICV detectors to others 
built using more sophisticated, automated feature selection approaches (e.g. [4], [5]). 
In addition, we only used a single data mining algorithm to generate detectors, J48 
decision trees. Different data mining algorithms may have yielded different results. 
Our results are also contingent on the initial set features engineered, since there is no 



 
 

guarantee we computed all possible relevant features for our domain. Finally, we did 
not consider the notion of broader generalizability. For example, could a detector built 
for one science domain also detect inquiry skill in other domains? Considering these 
additional issues will provide more insight into the role construct validity plays in the 
development and successful use of machine-learned detectors. 
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